Skip to main content Accessibility help

Verification methods: Rigorous results using floating-point arithmetic

  • Siegfried M. Rump (a1)


A classical mathematical proof is constructed using pencil and paper. However, there are many ways in which computers may be used in a mathematical proof. But ‘proof by computer’, or even the use of computers in the course of a proof, is not so readily accepted (the December 2008 issue of the Notices of the American Mathematical Society is devoted to formal proofs by computer).

In the following we introduce verification methods and discuss how they can assist in achieving a mathematically rigorous result. In particular we emphasize how floating-point arithmetic is used.



Hide All
Abbott, J. P. and Brent, R. P. (1975), ‘Fast local convergence with single and multistep methods for nonlinear equations’, Austr. Math. Soc. B 19, 173199.
ACRITH (1984), IBM High-Accuracy Arithmetic Subroutine Library (ACRITH), Release 1, IBM Deutschland GmbH, Böblingen.
Adams, R. A. (1975), Sobolev Spaces, Academic Press, New York.
Alefeld, G., private communication.
Alefeld, G. (1994), Inclusion methods for systems of nonlinear equations. In Topics in Validated Computations (Herzberger, J., ed.), Studies in Computational Mathematics, Elsevier, Amsterdam, pp. 726.
Alefeld, G. and Herzberger, J. (1974), Einführung in die Intervallrechnung, BI Wissenschaftsverlag.
Alefeld, G., Kreinovich, V. and Mayer, G. (1997), ‘On the shape of the symmetric, persymmetric, and skew-symmetric solution set’, SIAM J. Matrix Anal. Appl. 18, 693705.
Alefeld, G., Kreinovich, V. and Mayer, G. (2003), ‘On the solution sets of particular classes of linear interval systems’, J. Comput. Appl. Math. 152, 115.
Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S. and Sorensen, D. C. (1995), LAPACK User‘s Guide, Release 2.0, 2nd edn, SIAM, Philadelphia.
Andrade, M. V. A., Comba, J. L. D. and Stolfi, J. (1994), Affine arithmetic. Extended abstract, presented at INTERVAL'94, St. Petersburg.
ARITHMOS (1986), ARITHMOS: Benutzerhandbuch, Siemens AG, Bibl.-Nr. U 2900-I-Z87–1 edition.
Aschbacher, M. (1994), Sporadic Groups, Cambridge University Press.
Avizienis, A. (1961), ‘Signed-digit number representations for fast parallel arithmetic’, Ire Trans. Electron. Comp. EC-10, 389400.
Bauer, H. (1978), Wahrscheinlichkeitstheorie und Grundzüge der Maβtheorie, 3rd edn, de Gruyter, Berlin.
Beaumont, O. (2000), Solving interval linear systems with oblique boxes. Research report PI 1315, INRIA.
Behnke, H. (1989), Die Bestimmung von Eigenwertschranken mit Hilfe von Variationsmethoden und Intervallarithmetik. Dissertation, Institut für Mathematik, TU Clausthal.
Behnke, H. and Goerisch, F. (1994), Inclusions for eigenvalues of selfadjoint problems. In Topics in Validated Computations (Herzberger, J., ed.), Studies in Computational Mathematics, Elsevier, Amsterdam, pp. 277322.
Ben-Tal, A. and Nemirovskii, A. (2001), Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, SIAM, Philadelphia.
Bernelli Zazzera, F., Vasile, M., Massari, M. and Di Lizia, P. (2004), Assessing the accuracy of interval arithmetic estimates in space flight mechanics. Final report, Ariadna id: 04/4105, Contract Number: 18851/05/NL/MV.
Bertot, Y. and Castéran, P. (2004), Interactive Theorem Proving and Program Development, Coq'Art: The Calculus of Inductive Constructions, Texts in Theoretical Computer Science, Springer.
Berz, M. and Makino, K. (1999), ‘New methods for high-dimensional verified quadrature’, Reliable Computing 5, 1322.
Bischof, C. H., Carle, A., Corliss, G. and Griewank, A. (1991), ADIFOR: Generating derivative codes from Fortran programs. Technical report, Mathematics and Computer Science Division, Argonne National Laboratory.
Borchers, B. (1999), ‘SDPLIB 1.2: A library of semidefinite programming test problems’, Optim. Methods Software 11, 683690.
Bornemann, F., Laurie, D., Wagon, S. and Waldvogel, J. (2004), The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing, SIAM, Philadelphia.
Börsken, N. C. (1978), Komplexe Kreis-Standardfunktionen. Diplomarbeit, Freiburger Intervall-Ber. 78/2, Institut für Angewandte Mathematik, Universität Freiburg.
Braune, K. D. (1987), Hochgenaue Standardfunktionen für reelle und komplexe Punkte und Intervalle in beliebigen Gleitpunktrastern. Dissertation, Univer-sität Karlsruhe.
Breuer, B., Horák, J., McKenna, P. J. and Plum, M. (2006), ‘A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam’, J. Diff. Equations 224, 6097.
Breuer, B., McKenna, P. J. and Plum, M. (2003), ‘Multiple solutions for a semilinear boundary value problem: A computational multiplicity proof’, J. Diff. Equations 195, 243269.
Brown, B. M., McCormack, D. K. R. and Zettl, A. (2000), ‘On a computer assisted proof of the existence of eigenvalues below the essential spectrum of the Sturm-Liouville problem’, J. Comput. Appl. Math. 125, 385393.
Browne, M. W. (1988), Is a math proof a proof if no one can check it? The New York Times, December 1988, p. 1.
Bunch, J. R., Demmel, J. W. and Van Loan, C. F. (1989), ‘The strong stability of algorithms for solving symmetric linear systems’, SIAM J. Matrix Anal. Appl. 10, 494499.
Bünger, F. (2008), private communication.
Caprani, O. and Madsen, K. (1978), ‘Iterative methods for interval inclusion of fixed points’, BIT Numer. Math. 18, 4251.
Chatelin, F. (1988), Analyse statistique de la qualité numérique et arithmétique de la résolution approchée d'équations par calcul sur ordinateur. Technical Report F.133, Centre Scientifique IBM-France.
Choi, Y. S. and McKenna, P. J. (1993), ‘A mountain pass method for the numerical solutions of semilinear elliptic problems’, Nonlinear Anal. Theory Methods Appl. 20, 417437.
Collatz, L. (1942), ‘Einschlieβungssatz für die charakteristischen Zahlen von Matrizen’, Math. Z. 48, 221226.
Corliss, G. F. and Rall, L. B. (1987), ‘Adaptive, self-validating numerical quadrature’, SIAM J. Sci. Statist. Comput. 8, 831847.
Corliss, G., Faure, C., Griewank, A., Hascöet, L. and Nauman, U. (2002), Automatic Differentiation of Algorithms: From Simulation to Optimization, Springer.
Cuyt, A., Verdonk, B., Becuwe, S. and Kuterna, P. (2001), ‘A remarkable example of catastrophic cancellation unraveled’, Computing 66, 309320.
Dancer, E. N. and Yan, S. S. (2005), ‘On the superlinear Lazer-McKenna conjecture’, J. Diff. Equations 210, 317351.
Darboux, G. (1876), ‘Sur les développements en série des fonctions d'une seule variable’, J. des Mathématiques Pures et Appl. 3, 291312.
Daumas, M., Melquiond, G. and Muñoz, C. (2005), Guaranteed proofs using interval arithmetic. In Proc. 17th IEEE Symposium on Computer Arithmetic (ARITH'05).
Dekker, T. J. (1971), ‘A floating-point technique for extending the available precision’, Numer. Math. 18, 224242.
Demmel, J. B. (1989), On floating point errors in Cholesky. LAPACK Working Note 14 CS–89–87, Department of Computer Science, University of Tennessee, Knoxville, TN, USA.
Demmel, J. B., Diament, B. and Malajovich, G. (2001), ‘On the complexity of computing error bounds’, Found. Comput. Math. 1, 101125.
Demmel, J. B., Dumitriu, I., Holtz, O. and Koev, P. (2008), Accurate and efficient expression evaluation and linear algebra. In Acta Numerica, Vol. 17, Cambridge University Press, pp. 87145.
Demmel, J. B., Hida, Y., Kahan, W., Li, X. S., Mukherjee, S. and Riedy, E. J. (2004), Error bounds from extra precise iterative refinement. Report no. ucb/csd–04–1344, Computer Science Devision (EECS), University of California, Berkeley.
Dwyer, P. S. (1951), Linear Computations, Wiley, New York/London.
Eckart, C. and Young, G. (1936), ‘The approximation of one matrix by another of lower rank’, Psychometrika 1, 211218.
Eckmann, J.-P., Koch, H. and Wittwer, P. (1984), ‘A computer-assisted proof of universality for area-preserving maps’, Mem. Amer. Math. Soc. 47, 289.
Eijgenraam, P. (1981), The solution of initial value problems using interval arithmetic.
Fazekas, B., Plum, M. and Wieners, C. (2005), Enclosure for biharmonic equation. In Dagstuhl Online Seminar Proceedings 05391.
Figueiredo, L. H. de and Stolfi, J. (2004), ‘Affine arithmetic: Concepts and applications’, Numer. Algorithms 37, 147158.
Foster, L. V. (1994), ‘Gaussian elimination with partial pivoting can fail in practice’, SIAM J. Matrix Anal. Appl. 14, 13541362.
Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P. and Zimmermann, P. (2005), MPFR: A multiple-precision binary floating-point library with correct rounding. Research Report RR-5753, INRIA. Code and documentation available at:
Frommer, A. (2001), Proving conjectures by use of interval arithmetic. In Perspectives on Enclosure Methods: SCAN 2000 (Kulisch, al., ed.), Springer.
Galias, Z. and Zgliczynski, P. (1998), ‘Computer assisted proof of chaos in the Lorenz equations’, Physica D 115, 165188.
Gargantini, I. and Henrici, P. (1972), ‘Circular arithmetic and the determination of polynomial zeros’, Numer. Math. 18, 305320.
Gidas, B., Ni, W. and Nirenberg, L. (1979), ‘Symmetry and related problems via the maximum principle’, Comm. Math. Phys. 68, 209243.
Gilbarg, D. and Trudinger, N. S. (1983), Elliptic Partial Differential Equations of Second Order, 2nd edn, Springer.
Goldberg, D. (1991), ‘What every computer scientist should know about floatingpoint arithmetic’, ACM Comput. Surv. 23, 548.
Gordon, M. J. C. (2000), From LCF to HOL: A short history. In Proof, Language, and Interaction: Essays in Honour of Robin Milner (Plotkin, G., Stirling, C. and Tofte, M., eds), MIT Press.
Gorenstein, D., Lyons, R. and Solomon, R. (1994), The Classification of the Finite Simple Groups, Vol. 40 of Math. Surveys Monographs, AMS, Providence, RI.
Griewank, A. (2003), A mathematical view of automatic differentiation. In Acta Numerica, Vol. 12, Cambridge University Press, pp. 321398.
Grisvard, P. (1985), Elliptic Problems in Nonsmooth Domains, Pitman, Boston.
Hansen, E. (1969), The centered form. In Topics in Interval Analysis (Hansen, E., ed.), Oxford University Press, pp. 102106.
Hansen, E. R. and Smith, R. (1967), ‘Interval arithmetic in matrix computations II’, SIAM J. Numer. Anal. 4, 19.
Hargreaves, G. (2002), Interval analysis in MATLAB. Master's thesis, University of Manchester.
Hass, J., Hutchings, M. and Schlafly, R. (1995), ‘The double bubble conjecture’, Electron. Res. Announc. Amer. Math. Soc. 1, 98102.
Higham, D. J. and Higham, N. J. (1992 a), ‘Componentwise perturbation theory for linear systems with multiple right-hand sides’, Linear Algebra Appl. 174, 111129.
Higham, D. J. and Higham, N. J. (1992 b), ‘Backward error and condition of structured linear systems’, SIAM J. Matrix Anal. Appl. 13, 162175.
Higham, N. J. (2002), Accuracy and Stability of Numerical Algorithms, 2nd edn, SIAM, Philadelphia.
Hölzl, J. (2009), Proving real-valued inequalities by computation in Isabelle/HOL. Diplomarbeit, Fakultät für Informatik der Technischen Universität München.
IEEE 754 (2008), ANSI/IEEE 754–2008: IEEE Standard for Floating-Point Arithmetic, New York.
Jansson, C. (1991), ‘Interval linear systems with symmetric matrices, skew-symmetric matrices, and dependencies in the right hand side’, Computing 46, 265274.
Jansson, C. (1994), On self-validating methods for optimization problems. In Topic,s in Validated Computations (Herzberger, J., ed.), Studies in Computational Mathematics, Elsevier, Amsterdam, pp. 381438.
Jansson, C. (1997), ‘Calculation of exact bounds for the solution set of linear interval systems’, Linear Algebra Appl. 251, 321340.
Jansson, C. (2004 a), ‘A rigorous lower bound for the optimal value of convex optimization problems’, J. Global Optim. 28, 121137.
Jansson, C. (2004 b), ‘Rigorous lower and upper bounds in linear programming’, SIAM J. Optim. 14, 914935.
Jansson, C. (2006), VSDP: A MATLAB software package for verified semidefinite programming. In NOLTA 2006, pp. 327330.
Jansson, C. (2009), ‘On verified numerical computations in convex programming’, Japan J. Indust. Appl. Math. 26, 337363.
Jansson, C. and Rohn, J. (1999), ‘An algorithm for checking regularity of interval matrices’, SIAM J. Matrix Anal. Appl. 20, 756776.
Jansson, C., Chaykin, D. and Keil, C. (2007), ‘Rigorous error bounds for the optimal value in semidefinite programming’, SIAM J. Numer. Anal. 46, 180200.
Kahan, W. M. (1968), A more complete interval arithmetic. Lecture notes for a summer course at the University of Michigan.
Kanzawa, Y. and Oishi, S. (1999 a), ‘Imperfect singular solutions of nonlinear equations and a numerical method of proving their existence’, IEICE Trans. Fundamentals E82-A, 10621069.
Kanzawa, Y. and Oishi, S. (1999 b), ‘Calculating bifurcation points with guaranteed accuracy’, IEICE Trans. Fundamentals E82-A, 10551061.
Kato, T. (1966), Perturbation Theory for Linear Operators, Springer, New York.
Kearfott, R. B. (1997), ‘Empirical evaluation of innovations in interval branch and bound algorithms for nonlinear systems’, SIAM J. Sci. Comput. 18, 574594.
Kearfott, R. B., Dawande, M., Du, K. and Hu, C. (1992), ‘INTLIB: A portable Fortran-77 elementary function library’, Interval Comput. 3, 96105.
Kearfott, R. B., Dian, J. and Neumaier, A. (2000), ‘Existence verification for singular zeros of complex nonlinear systems’, SIAM J. Numer. Anal. 38, 360379.
Kearfott, R. B., Nakao, M. T., Neumaier, A., Rump, S. M., Shary, S. P. and van Hentenfyck, P. (2005) Standardized notation in interval analysis. In Proc. XIII Baikal International School-Seminar: Optimization Methods and their Applications, Vol. 4, Melentiev Energy Systems Institute SB RAS, Irkutsk.
Keil, C. (2006), Lurupa: Rigorous error bounds in linear programming. In Algebraic and Numerical Algorithms and Computer-assisted Proofs (Buch-berger, B., Oishi, S., Plum, M. and Rump, S. M., eds), Vol. 05391 of Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.
Keil, C. and Jansson, C. (2006), ‘Computational experience with rigorous error bounds for the Netlib linear programming library’, Reliable Computing 12, 303321.
Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C. and Rauch, M. (1993), C-XSC A C++ Class Library for Extended Scientific Computing, Springer, Berlin.
Knüppel, O. (1994), ‘PROFIL/BIAS: A fast interval library’, Computing 53, 277287.
Knüppel, O. (1998), PROFIL/BIAS and extensions, Version 2.0. Technical report, Institut für Informatik III, Technische Universität Hamburg-Harburg.
Knuth, D. E. (1969), The Art of Computer Programming: Seminumerical Algorithms, Vol. 2, Addison-Wesley, Reading, MA.
Kolev, L. V. and Mladenov, V. (1997), Use of interval slopes in implementing an interval method for global nonlinear DC circuit analysis. Internat. J. Circuit Theory Appl. 12, 3742.
Krämer, W. (1987), Inverse Standardfunktionen für reelle und komplexe Intervallargumente mit a priori Fehlerabschätzung für beliebige Datenformate. Dissertation, Universität Karlsruhe.
Krämer, W. (1991), Verified solution of eigenvalue problems with sparse matrices. In Proc. 13th World Congress on Computation and Applied Mathematics, pp. 3233.
Krawczyk, R. (1969 a), ‘Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken’, Computing 4, 187201.
Krawczyk, R. (1969 b), ‘Fehlerabschätzung reeller Eigenwerte und Eigenvektoren von Matrizen’, Computing 4, 281293.
Krawczyk, R. and Neumaier, A. (1985), ‘Interval slopes for rational functions and associated centered forms’, SIAM J. Numer. Anal. 22, 604616.
Kreinovich, V., Lakeyev, A. V. and Noskov, S. I. (1993), ‘Optimal solution of interval linear systems is intractable (NP-hard)’, Interval Comput. 1, 614.
Kreinovich, V., Neumaier, A. and Xiang, G. (2008), ‘Towards a combination of interval and ellipsoid uncertainty’, Vych. Techn. (Computational Technologies) 13, 516.
Kulisch, U. (1981), Computer Arithmetic in Theory and Practice, Academic Press.
La Porte, M. and Vignes, J. (1974), ‘Etude statistique des erreurs dans l‘arith-métique des ordinateurs: Application au contrôle des résultats d‘algorithmes númeriques’, Numer. Math. 23, 6372.
Ladyzhenskaya, O. A. and Uraltseva, N. N. (1968), Linear and Quasilinear Elliptic Equations, Academic Press, New York.
Lahmann, J. and Plum, M. (2004), ‘A computer-assisted instability proof for the Orr-Sommerfeld equation with Blasius profile’, Z. Angew. Math. Mech. 84, 188204.
Lam, C. W. H., Thiel, L. and Swiercz, S. (1989), ‘The nonexistence of finite projective planes of order 10’, Canad. J. Math. 41, 11171123.
Lehmann, N. J. (1963), ‘Optimale Eigenwerteinschlieβung’, Numer. Math. 5, 246272.
Li, X. S., Demmel, J. W., Bailey, D. H., Henry, G., Hida, Y., Iskandar, J., Kahan, W., Kang, S. Y., Kapur, A., Martin, M. C., Thompson, B. J., Tung, T. and Yoo, D. J. (2002), ‘Design, implementation and testing of extended and mixed precision BLAS’, ACM Trans. Math. Software 28, 152205.
Loh, E. and Walster, W. (2002), ‘Rump‘s example revisited’, Reliable Computing 8, 245248.
Lohner, R. (1988), Einschlieβung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anordnungen. PhD thesis, University of Karlsruhe.
Maple (2009), Release 13, Reference Manual.
Markov, S. and Okumura, K. (1999), The contribution of T. Sunaga to interval analysis and reliable computing. In Developments in Reliable Computing (Csendes, T., ed.), Kluwer, pp. 167188.
Mathematica (2009), Release 7.0, Reference Manual.
MATLAB (2004), User‘s Guide, Version 7, The MathWorks.
Moore, R. E. (1962), Interval arithmetic and automatic error analysis in digital computing. Dissertation, Stanford University.
Moore, R. E. (1966), Interval Analysis, Prentice-Hall, Englewood Cliffs.
Moore, R. E. (1977), ‘A test for existence of solutions for non-linear systems’, SIAM J. Numer. Anal. 4, 611615.
Moore, R. E. (1999), ‘The dawning’, Reliable Computing 5, 423424.
Moore, R. E., Kearfott, R. B. and Cloud, M. J. (2009), Introduction To Interval Analysis, Cambridge University Press.
Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Mel-quiond, G., Revol, R., Stehlé, D. and Torres, S. (2009), Handbook of Floating-Point Arithmetic, Birkhäuser, Boston.
Nagatou, K., Nakao, M. T. and Yamamoto, N. (1999), ‘An approach to the numerical verification of solutions for nonlinear elliptic problems with local uniqueness’, Numer. Funct. Anal. Optim. 20, 543565.
Nakao, M. T. (1988), ‘A numerical approach to the proof of existence of solutions for elliptic problems’, Japan J. Appl. Math. 5, 313332.
Nakao, M. T. (1993), Solving nonlinear elliptic problems with result verification using an H- 1 type residual iteration. Computing (Suppl.) 9, 161173.
Nakao, M. T. and Yamamoto, N. (1995), ‘Numerical verifications for solutions to elliptic equations using residual iterations with higher order finite elements’, J. Comput. Appl. Math. 60, 271279.
Nakao, M. T., Hashimoto, K. and Watanabe, Y. (2005), ‘A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems’, Computing 75, 114.
Nedialkov, N. S. (1999), Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. PhD dissertation, University of Toronto, Canada.
Nedialkov, N. S. and Jackson, K. R. (2000), ODE software that computes guaranteed bounds on the solution. In Advances in Software Tools for Scientic Computing (Langtangen, H. P., Bruaset, A. M. and Quak, E., eds), Springer, pp. 197224.
NETLIB (2009), Linear Programming Library.
Neumaier, A. (1974), ‘Rundungsfehleranalyse einiger Verfahren zur Summation endlicher Summen’, Z. Angew. Math. Mech. 54, 3951.
Neumaier, A. (1984), ‘New techniques for the analysis of linear interval equations’, Linear Algebra Appl. 58, 273325.
Neumaier, A. (1987), ‘Overestimation in linear interval equations’, SIAM J. Numer. Anal. 24, 207214.
Neumaier, A. (1988), ‘An existence test for root clusters and multiple roots’, Z. Angew. Math. Mech. 68, 256257.
Neumaier, A. (1989), ‘Rigorous sensitivity analysis for parameter-dependent systems of equations’, J. Math. Anal. Appl. 144, 1625.
Neumaier, A. (1990), Interval Methods for Systems of Equations, Encyclopedia of Mathematics and its Applications, Cambridge University Press.
Neumaier, A. (1993), ‘The wrapping effect, ellipsoid arithmetic, stability and confidence regions’, Computing Supplementum 9, 175190.
Neumaier, A. (2001), Introduction to Numerical Analysis, Cambridge University Press.
Neumaier, A. (2002), ‘Grand challenges and scientific standards in interval analysis’, Reliable Computing 8, 313320.
Neumaier, A. (2003), ‘Enclosing clusters of zeros of polynomials’, J. Comput. Appl. Math. 156, 389401.
Neumaier, A. (2004), Complete search in continuous global optimization and constraint satisfaction. In Acta Numerica, Vol. 13, Cambridge University Press, pp. 271369.
Neumaier, A. (2009), FMathL: Formal mathematical language.
Neumaier, A. (2010), ‘Improving interval enclosures’, Reliable Computing. To appear.
Neumaier, A. and Rage, T. (1993), ‘Rigorous chaos verification in discrete dynamical systems’, Physica D 67, 327346.
Neumaier, A. and Shcherbina, O. (2004), ‘Safe bounds in linear and mixed-integer programming’, Math. Program. A 99, 283296.
Oettli, W. and Prager, W. (1964), ‘Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides’, Numer. Math. 6, 405409
Ogita, T., Oishi, S. and Ushiro, Y. (2001), ‘Fast verification of solutions for sparse monotone matrix equations’, Comput. Suppl. 15, 175187.
Oishi, S. (1998), private communication.
Oishi, S. (2000), Numerical Methods with Guaranteed Accuracy (in Japanese), Corona-sya.
Oishi, S. and Rump, S. M. (2002), ‘Fast verification of solutions of matrix equations’, Numer. Math. 90, 755773.
Okayama, T., Matsuo, T. and Sugihara, M. (2009), Error estimates with explicit constants for sinc approximation, sinc quadrature and sinc indefinite integration. Technical Report METR2009–01, The University of Tokyo.
Oliveira, J. B. and de Figueiredo, L. H. (2002) ‘Interval computation of Viswanath‘s constant’, Reliable Computing 8, 131138.
Ordón~ez, F. and Freund, R. M. (2003), ‘Computational experience and the explanatory value of condition measures for linear optimization’, SIAM J. Optim. 14, 307333.
Overton, M. (2001), Numerical Computing with IEEE Floating Point Arithmetic, SIAM, Philadelphia.
Ovseevich, A. and Chernousko, F. (1987), ‘On optimal ellipsoids approximating reachable sets’, Problems of Control and Information Theory 16, 125134.
Payne, M. and Hanek, R. (1983), ‘Radian reduction for trigonometric functions’, SIGNUM Newsletter 18, 1924.
Petras, K. (2002), ‘Self-validating integration and approximation of piecewise analytic functions’, J. Comput. Appl. Math. 145, 345359.
Plum, M. (1992), ‘Numerical existence proofs and explicit bounds for solutions of nonlinear elliptic boundary value problems’, Computing 49, 2544.
Plum, M. (1994), ‘Enclosures for solutions of parameter-dependent nonlinear elliptic boundary value problems: Theory and implementation on a parallel computer’, Interval Comput. 3, 106121.
Plum, M. (1995), ‘Existence and enclosure results for continua of solutions of parameter-dependent nonlinear boundary value problems’, J. Comput. Appl. Math. 60, 187200.
Plum, M. (1996), Enclosures for two-point boundary value problems near bifurcation points. In Scientific Computing and Validated Numerics: Proc. International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN-95 (Alefeld, al., eds), Vol. 90 of Math. Res., Akademie Verlag, Berlin, pp. 265279.
Plum, M. (1997), ‘Guaranteed numerical bounds for eigenvalues’, In Spectral Theory and Computational Methods of Sturm-Liouville Problems: Proc. 1996 Conference, Knoxville, TN, USA (Hinton, al., eds), Vol. 191 of Lect. Notes Pure Appl. Math., Marcel Dekker, New York, pp. 313332.
Plum, M. (2008), ‘Existence and multiplicity proofs for semilinear elliptic boundary value problems by computer assistance’, DMV Jahresbericht 110, 1954.
Plum, M. and Wieners, C. (2002), ‘New solutions of the Gelfand problem’, J. Math. Anal. Appl. 269, 588606.
Poljak, S. and Rohn, J. (1993), ‘Checking robust nonsingularity is NP-hard’, Math. Control, Signals, and Systems 6, 19.
Rall, L. B. (1981), Automatic Differentiation: Techniques and Applications, Vol. 120 of Lecture Notes in Computer Science, Springer.
Ratschek, H. and Rokne, J. (1984), Computer Methods for the Range of Functions, Halsted Press, New York.
Rauh, A., Auer, E. and Hofer, E. P. (2006), ValEncIA-IVP: A comparison with other initial value problem solvers. In Proc. 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics, SCAN, Duisburg.
Rektorys, K. (1980), Variational methods in mathematics. In Science and Engineering, 2nd edn, Reidel, Dordrecht.
Ris, F. N. (1972), Interval analysis and applications to linear algebra. PhD dissertation, Oxford University.
Risch, R. H. (1969), ‘The problem of integration in finite terms’, Trans. Amer. Math. Soc. 139, 167189.
Rohn, J. (1994), NP-hardness results for linear algebraic problems with interval data. In Topics in Validated Computations (Herzberger, J., ed.), Studies in Computational Mathematics, Elsevier, Amsterdam, pp. 463471.
Rohn, J. (2005), A handbook of results on interval linear problems.
Rohn, J. (2009 a), ‘Forty necessary and sufficient conditions for regularity of interval matrices: A survey’, Electron. J. Linear Algebra 18, 500512.
Rohn, J. (2009 b), VERSOFT: Verification software in MATLAB/INTLAB.
Rohn, J. and Kreinovich, V. (1995), ‘Computing exact componentwise bounds on solutions of linear system is NP-hard’, SIAM J. Matrix Anal. Appl. 16, 415420.
Rump, S. M. (1980), Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe.
Rump, S. M. (1983), Solving algebraic problems with high accuracy. Habilitationsschrift, published in A New Approach to Scientific Computation (Kulisch, U. W. and Miranker, W. L., eds), Academic Press, pp. 51120.
Rump, S. M. (1990), ‘Rigorous sensitivity analysis for systems of linear and nonlinear equations’, Math. Comput. 54, 721736.
Rump, S. M. (1994), Verification methods for dense and sparse systems of equations. In Topics in Validated Computations (Herzberger, J., ed.), Elsevier, Studies in Computational Mathematics, Amsterdam, pp. 63136.
Rump, S. M. (1999 a), INTLAB: INTerval LABoratory. In Developments in Reliable Computing (Csendes, T., ed.), Kluwer, Dordrecht, pp. 77104.
Rump, S. M. (1999 b), ‘Fast and parallel interval arithmetic’, BIT Numer. Math. 39, 539560.
Rump, S. M. (2001 a), Rigorous and portable standard functions. BIT Numer. Math. 41, 540562.
Rump, S. M. (2001 b), ‘Computational error bounds for multiple or nearly multiple eigenvalues’, Linear Algebra Appl. 324, 209226.
Rump, S. M. (2003 a), ‘Ten methods to bound multiple roots of polynomials’, J. Comput. Appl. Math. 156, 403432.
Rump, S. M. (2003 b), ‘Structured perturbations I: Normwise distances’, SIAM J. Matrix Anal. Appl. 25, 130.
Rump, S. M. (2003 c), ‘Structured perturbations II: Componentwise distances’, SIAM J. Matrix Anal. Appl. 25, 3156.
Rump, S. M. (2006), ‘Eigenvalues, pseudospectrum and structured perturbations’, Linear Algebra Appl. 413, 567593.
Rump, S. M. (2009), ‘Ultimately fast accurate summation’, SIAM J. Sci. Comput. 31, 34663502.
Rump, S. M. and Graillat, S. (2009), Verified error bounds for multiple roots of systems of nonlinear equations. To appear in Numer. Algorithms; published online at Numer Algor DOI 10.1007/s11075–009–9339–3.
Rump, S. M. and Oishi, S. (2009), Verified error bounds for multiple roots of nonlinear equations. In Proc. International Symposium on Nonlinear Theory and its Applications: NOLTA'09.
Rump, S. M. and Sekigawa, H. (2009), ‘The ratio between the Toeplitz and the unstructured condition number’, Operator Theory: Advances and Applications 199, 397419.
Rump, S. M. and Zemke, J. (2004), ‘On eigenvector bounds’, BIT Numer. Math. 43, 823837.
Rump, S. M., Ogita, T. and Oishi, S. (2008), ‘Accurate floating-point summation I: Faithful rounding’, SIAM J. Sci. Comput. 31, 189224.
Sahinidis, N. V. and Tawaralani, M. (2005), ‘A polyhedral branch-and-cut approach to global optimization’, Math. Program. B 103, 225249.
Schichl, H. and Neumaier, A. (2004), ‘Exclusion regions for systems of equations’, SIAM J. Numer. Anal. 42, 383408.
Schichl, H. and Neumaier, A. (2005), ‘Interval analysis on directed acyclic graphs for global optimization’, J. Global Optim. 33, 541562.
Shary, S. P. (2002), ‘A new technique in systems analysis under interval uncertainty and ambiguity’, Reliable Computing 8, 321419.
Stewart, G. W. (1990), ‘Stochastic perturbation theory’, SIAM Rev. 32, 579610.
Sunaga, T. (1956), Geometry of numerals. Master‘s thesis, University of Tokyo.
Sunaga, T. (1958), ‘Theory of an interval algebra and its application to numerical analysis’, RAAG Memoirs 2, 2946.
Takayasu, A., Oishi, S. and Kubo, T. (2009 a), Guaranteed error estimate for solutions to two-point boundary value problem. In Proc. International Symposium on Nonlinear Theory and its Applications: NOLTA'09, pp. 214217.
Takayasu, A., Oishi, S. and Kubo, T. (2009 b), Guaranteed error estimate for solutions to linear two-point boundary value problems with FEM. In Proc. Asia Simulation Conference 2009 (JSST 2009), Shiga, Japan, pp. 18.
Tawaralani, M. and Sahinidis, N. V. (2004), ‘Global optimization of mixed-integer nonlinear programs: A theoretical and computational study’, Math. Program. 99, 563591.
Todd, M. J. (2001), Semidefinite programming. In Acta Numerica, Vol. 10, Cambridge University Press, pp. 515560.
Trefethen, L. N. (2002), ‘The SIAM 100-dollar, 100-digit challenge’, SIAM-NEWS 35, 2.
Trefethen, L. N. and Schreiber, R. (1990), ‘Average-case stability of Gaussian elimination’, SIAM J. Matrix Anal. Appl. 11, 335360.
Tucker, W. (1999), ‘The Lorenz attractor exists’, CR Acad. Sci., Paris, Sér. I, Math. 328, 11971202.
Tütüncü, R. H., Toh, K. C. and Todd, M. J. (2003), ‘Solving semidefinite-quadratic-linear programs using SDPT3’, Math. Program. B 95, 189217.
Vandenberghe, L. and Boyd, S. (1996), ‘Semidefinite programming’, SIAM Review 38, 4995.
Vignes, J. (1978), ‘New methods for evaluating the validity of the results of mathematical computations’, Math. Comp. Simul. XX, 227249.
Vignes, J. (1980), Algorithmes Numériques: Analyse et Mise en Oeuvre 2: Equations et Systèmes Non Linéaires, Collection Langages et Algorithmes de l'Informatique, Editions Technip, Paris.
Viswanath, D. (1999) ‘Random Fibonacci sequences and the number 1.13198824…’, Math. Comp. 69, 11311155.
Viswanath, D. and Trefethen, L. N. (1998), ‘Condition numbers of random triangular matrices’, SIAM J. Matrix Anal. Appl. 19, 564581.
Warmus, M. (1956), ‘Calculus of approximations’, Bulletin de l‘Academie Polonaise des Sciences 4, 253259.
Werner, B. and Spence, A. (1984), ‘The computation of symmetry-breaking bifurcation points’, SIAM J. Numer. Anal. 21, 388399.
Wilkinson, J. H. (1965), The Algebraic Eigenvalue Problem, Clarendon Press, Oxford.
Wright, S. J. (1993), ‘A collection of problems for which Gaussian elimination with partial pivoting is unstable’, SIAM J. Sci. Comput. 14, 231238.
Yamanaka, N., Okayama, T., Oishi, S. and Ogita, T. (2009), ‘A fast verified automatic integration algorithm using double exponential formula’, RIMS Kokyuroku 1638, 146158.
Young, R. C. (1931), ‘The algebra of many-valued quantities’, Mathematische Annalen 104, 260290.
Zhu, Y.-K., Yong, J.-H. and Zheng, G.-Q. (2005), ‘A new distillation algorithm for floating-point summation’, SIAM J. Sci. Comput. 26, 20662078.
Zielke, G. and Drygalla, V. (2003), ‘Genaue Lösung linearer Gleichungssysteme’, GAMM Mitt. Ges. Angew. Math. Mech. 26, 7108.
Zimmermann, S. and Mertins, U. (1995), ‘Variational bounds to eigenvalues of self-adjoint eigenvalue problems with arbitrary spectrum’, Z. Anal. Anwendungen 14, 327345.

Related content

Powered by UNSILO

Verification methods: Rigorous results using floating-point arithmetic

  • Siegfried M. Rump (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.