Skip to main content Accessibility help
×
Home

Preconditioning

  • A. J. Wathen (a1)

Abstract

The computational solution of problems can be restricted by the availability of solution methods for linear(ized) systems of equations. In conjunction with iterative methods, preconditioning is often the vital component in enabling the solution of such systems when the dimension is large. We attempt a broad review of preconditioning methods.

Copyright

References

Hide All
Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y. and Koster, J. (2000), MUMPS: A general purpose distributed memory sparse solver. In Proc. PARA2000: 5th International Workshop on Applied Parallel Computing, Springer, pp. 122131.
Appleyard, J. R. and Cheshire, I. M. (1983), Nested factorization. Society of Petroleum Engineers, SPE 12264, presented at the Seventh SPE Symposium on Reservoir Simulation, San Francisco, 1983.
Arioli, M. (2004), ‘A stopping criterion for the conjugate gradient algorithm in a finite element method framework’, Numer. Math. 97, 124.
Arioli, M., Loghin, D. and Wathen, A. J. (2005), ‘Stopping criteria for iterations in finite element methods’, Numer. Math. 99, 381410.
Arnold, D. N., Falk, R. S. and Winther, R. (1997), ‘Preconditioning in $H(\text{div})$ and applications’, Math. Comp. 66, 957984.
Bai, Z.-Z., Golub, G. H. and Ng, M. K. (2003), ‘Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems’, SIAM J. Matrix Anal. Appl. 24, 603626.
Bakhvalov, N. S. (1966), ‘On the convergence of a relaxation method with natural constraints on the elliptic operator’, USSR Comp. Math. and Math. Phys. 6, 101135.
Bebendorf, M. (2008), Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, Vol. 63, Lecture Notes in Computational Science and Engineering, Springer.
Benzi, M. (2002), ‘Preconditioning techniques for large linear systems: A survey’, J. Comput. Phys. 182, 418477.
Benzi, M. and Olshanskii, M. A. (2011), ‘Field-of-values convergence analysis of augmented Lagrangian preconditioners for the linearized Navier–Stokes problem’, SIAM J. Numer. Anal. 49, 770788.
Benzi, M. and Simoncini, V. (2006), ‘On the eigenvalues of a class of saddle point matrices’, Numer. Math. 103, 173196.
Benzi, M. and Tuma, M. (1998), ‘A sparse approximate inverse preconditioner for nonsymmetric linear systems’, SIAM J. Sci. Comput. 19, 968994.
Benzi, M. and Tuma, M. (2003), ‘A robust incomplete factorization preconditioner for positive definite matrices’, Numer. Linear Algebra Appl. 10, 385400.
Benzi, M. and Wathen, A. J. (2008), Some preconditioning techniques for saddle point problems. In Model Order Reduction: Theory, Research Aspects and Applications (Schilders, W. H., van der Vorst, H. A. and Rommes, J., eds), Springer, pp. 195211.
Benzi, M., Cullum, J. K. and Tuma, M. (2000), ‘Robust approximate inverse preconditioning for the conjugate gradient method’, SIAM J. Sci. Comput. 22, 13181332.
Benzi, M., Golub, G. H. and Liesen, J. (2005), Numerical solution of saddle point problems. In Acta Numerica, Vol. 14, Cambridge University Press, pp. 1137.
Benzi, M., Meyer, C. D. and Tuma, M. (1996), ‘A sparse approximate inverse preconditioner for the conjugate gradient method’, SIAM J. Sci. Comput. 17, 11351149.
Benzi, M., Ng, M., Niu, Q. and Wang, Z. (2011a), ‘A relaxed dimensional factorization preconditioner for the incompressible Navier–Stokes equations’, J. Comput. Phys. 230, 61856202.
Benzi, M., Olshanskii, M. A. and Wang, Z. (2011b), ‘Modified augmented Lagrangian preconditioners for the incompressible Navier–Stokes equations’, Internat. J. Numer. Meth. Fluids 66, 486508.
Bergamaschi, L., Gondzio, J. and Zilli, G. (2004), ‘Preconditioning indefinite systems in interior point methods for optimization’, Comput. Optim. Appl. 28, 149171.
Bern, M., Gilbert, J. R., Hendrickson, B., Nguyen, N. and Toledo, S. (2006), ‘Support-graph preconditioners’, SIAM J. Matrix Anal. Appl. 27, 930951.
Björck, A. (1996), Numerical Methods for Least Squares Problems, SIAM.
Boyle, J. W., Mihajlovic, M. D. and Scott, J. A. (2010), ‘HSL_MI20: An efficient AMG preconditioner for finite element problems in 3D’, Internat. J. Numer. Meth. Engng 82, 6498.
Braess, D. and Peisker, P. (1986), ‘On the numerical solution of the biharmonic equation and the role of squaring matrices for preconditioning’, IMA J. Numer. Anal. 6, 393404.
Bramble, J. and Pasciak, J. (1988), ‘A preconditioning technique for indefinite system resulting from mixed approximations of elliptic problems’, Math. Comp. 50, 117.
Bramble, J. H., Pasciak, J. E. and Xu, J. (1990), ‘Parallel multilevel preconditioners’, Math. Comp. 55, 122.
Brandt, A. (1977), ‘Multilevel adaptive solutions to boundary-value problems’, Math. Comp. 31, 333390.
Brandt, A. and Ta’asan, S. (1986), Multigrid methods for nearly singular and slightly indefinite problems. In Multigrid Methods II (Hackbusch, W. and Trottenberg, U., eds), Vol. 1228 of Lecture Notes in Mathematics , Springer, pp. 99121.
Bröker, O., Grote, M. J., Mayer, C. and Reusken, A. (2001), ‘Robust parallel smoothing for multigrid via sparse approximate inverses’, SIAM J. Sci Comput. 23, 13951416.
Chan, R. H.-F. and Jin, X.-Q. (2007), An Introduction to Iterative Toeplitz Solvers, SIAM.
Chan, T. F. and Mathew, T. P. (1994), Domain decomposition algorithms. In Acta Numerica, Vol. 3, Cambridge University Press, pp. 61143.
Chandrasekaran, S., Dewilde, P., Gu, M., Pals, T., Sun, X., van der Veen, A. J. and White, D. (2005), ‘Some fast algorithms for sequentially semiseparable representation’, SIAM J. Matrix Anal. Appl. 27, 341364.
Chen, K. (2005), Matrix Preconditioning Techniques and Applications, Cambridge University Press.
Concus, P. and Golub, G. H. (1976), A generalized conjugate gradient method for nonsymmetric systems of linear equations. In Vol. 134 of Lecture Notes in Economics and Mathematical Systems (R. Glowinski and P. L. Lions eds), Springer, pp. 56–65.
Cooley, J. W. and Tukey, J. W. (1965), ‘An algorithm for the machine calculation of complex Fourier series’, Math. Comp. 19, 297301.
Davis, T. A. (2004), ‘Algorithm 832: UMFPACK V4.3 an unsymmetric-pattern multifrontal method’, ACM Trans. Math. Software 30, 196199.
de Sterck, H., Manteuffel, T., McCormick, S. and Olson, L. (2004), ‘Least-squares finite element methods and algebraic multigrid solvers for linear hyperbolic PDEs’, SIAM J. Sci Comput. 26, 3154.
Dollar, H. S. and Wathen, A. J. (2006), ‘Approximate factorization constraint preconditioners for saddle-point matrices’, SIAM J. Sci. Comput. 27, 15551572.
Dollar, H. S., Gould, N. I. M., Schilders, W. H. A. and Wathen, A. J. (2006), ‘Implicit-factorization preconditioning and iterative solvers for regularized saddle-point systems’, SIAM J. Matrix Anal. Appl. 28, 170189.
Dupont, T. F., Kendall, R. P. and Rachford, H. H. (1968), ‘An approximate factorization procedure for solving self-adjoint elliptic difference equations’, SIAM J. Numer. Anal. 5, 554573.
Elman, H. C. and Chernesky, M. P. (1993), ‘Ordering effects on relaxation methods applied to the discrete one-dimensional convection–diffusion equation’, SIAM J. Numer. Anal. 30, 12681290.
Elman, H. C. and Schultz, M. H. (1986), ‘Preconditioning by fast direct methods for non-self-adjoint nonseparable elliptic equations’, SIAM J. Numer. Anal. 23, 4457.
Elman, H. C. and Silvester, D. J. (1996), ‘Fast nonsymmetric iterations and preconditioning for the Navier–Stokes equations’, SIAM J. Sci. Comput. 17, 3346.
Elman, H. C. and Zhang, X. (1995), ‘Algebraic analysis of the hierarchical basis preconditioner’, SIAM J. Matrix Anal. Appl. 16, 192206.
Elman, H. C., Ernst, O. G. and O’Leary, D. P. (2001), ‘A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations’, SIAM J. Sci. Comput. 23, 12911315.
Elman, H. C., Howle, V. E., Shadid, J. N., Shuttleworth, R. and Tuminaro, R. (2006), ‘Block preconditioners based on approximate commutators’, SIAM J. Sci. Comput. 27, 16511668.
Elman, H. C., Ramage, A. and Silvester, D. J. (2007), ‘Algorithm 886: IFISS, A Matlab toolbox for modelling incompressible flow’, ACM Trans. Math. Software 33, #14.
Elman, H. C., Ramage, A. and Silvester, D. J. (2014a), ‘IFISS: A computational laboratory for investigating incompressible flow problems’, SIAM Rev. 56, 261273.
Elman, H. C., Silvester, D. J. and Wathen, A. J. (2014b), Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, second edition, Oxford University Press.
Elman, H. C., Silvester, D. J. and Wathen, A. J. (2005), Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Oxford University Press.
Engquist, B. and Ying, L. (2011a), ‘Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation’, Comm. Pure Appl. Math. 64, 697735.
Engquist, B. and Ying, L. (2011b), ‘Sweeping preconditioner for the Helmholtz equation: Moving perfectly matched layers’, Multiscale Model. Simul. 9, 686710.
Erhel, J., Burrage, K. and Pohl, B. (1995), ‘Restarted GMRES preconditioned by deflation’, J. Comput. Appl. Math. 69, 303318.
Erlangga, Y. A., Oosterlee, C. W. and Vuik, C. (2006), ‘A novel multigrid based preconditioner for heterogeneous Helmholtz problems’, SIAM J. Sci. Comput. 27, 14711492.
Ernst, O. G. and Gander, M. J. (2012), Why it is difficult to solve Helmholtz problems with classical iterative methods. In Numerical Analysis of Multiscale Problems (Graham, I. G., Hou, T. Y., Lakkis, O. and Scheichl, R., eds), Springer, pp. 325363.
Faber, V. and Manteuffel, T. (1984), ‘Necessary and sufficient conditions for the existence of a conjugate gradient method’, SIAM J. Numer. Anal. 21, 315339.
Fedorenko, R. P. (1964), ‘The speed of convergence of one iterative process’, USSR Comp. Math. and Math. Phys. 4, 227235.
Fischer, B. (2011), Polynomial Based Iteration Methods for Symmetric Linear Systems, SIAM.
Fischer, B., Ramage, A., Silvester, D. J. and Wathen, A. J. (1998), ‘Minimum residual methods for augmented systems’, BIT 38, 527543.
Frank, J. and Vuik, C. (2001), ‘On the construction of deflation-based preconditioners’, SIAM J. Sci. Comput. 23, 442462.
Freund, R. W. and Nachtigal, N. M. (1991), ‘QMR: A quasi-minimal residual method for non-Hermitian linear systems’, Numer. Math. 60, 315339.
Freund, R. W. and Nachtigal, N. M. (1994), A new Krylov-subspace method for symmetric indefinite linear systems. In Proc. 14th IMACS World Congress on Computational and Applied Mathematics (Ames, W. F., ed.), IMACS, pp. 12531256.
Freund, R. W. and Ruscheweyh, S. (1986), ‘On a class of Chebyshev approximation problems which arise in connection with a conjugate gradient type method’, Numer. Math. 48, 525542.
Gander, M. J., Magoulès, F. and Nataf, F. (2002), ‘Optimized Schwarz methods without overlap for the Helmholtz equation’, SIAM J. Sci. Comput. 24, 3860.
Gee, M. W., Siefert, C. M., Hu, J. J., Tuminaro, R. S. and Sala, M. G. (2006), ML 5.0 Smoothed Aggregation User’s Guide. Report SAND2006-2649, Sandia National Laboratories.
Giles, M. B. (2008), ‘Multilevel Monte Carlo path simulation’, Oper. Res. 56, 607617.
Giraud, L., Gratton, S., Pinel, X. and Vasseur, X. (2010), ‘Flexible GMRES with deflated restarting’, SIAM J. Sci. Comput. 32, 18581878.
Gould, N. I. M., Hribar, M. E. and Nocedal, J. (2001), ‘On the solution of equality constrained quadratic programming problems arising in optimization’, SIAM J. Sci. Comput. 23, 13761395.
Gould, N. I. M. and Simoncini, V. (2009), ‘Spectral analysis of saddle point matrices with indefinite leading blocks’, SIAM J. Matrix Anal. Appl. 31, 11521171.
Graham, I. G. and Hagger, M. J. (1999), ‘Unstructured additive Schwarz-conjugate gradient method for elliptic problems with highly discontinuous coefficients’, SIAM J. Sci. Comput. 20, 20412066.
Grasedyck, L. and Hackbusch, W. (2003), ‘Construction and arithmetics of ${\mathcal{H}}$ -matrices’, Computing 70, 295334.
Greenbaum, A. (1997), Iterative Methods for Solving Linear Systems, SIAM.
Greengard, L. and Rokhlin, V. (1987), ‘A fast algorithm for particle simulations’, J. Comput. Phys. 73, 325348.
Greif, C. and Schötzau, D. (2006), ‘Preconditioners for saddle point linear systems with highly singular (1,1) blocks’, Elect. Trans. Numer. Anal. 22, 114121.
Greif, C. and Schötzau, D. (2007), ‘Preconditioners for the discretized time-harmonic Maxwell equations in mixed form’, Numer. Linear Algebra Appl. 14, 281297.
Grote, M. J. and Huckle, T. (1997), ‘Parallel preconditioning with sparse approximate inverses’, SIAM J. Sci. Comput. 18, 83853.
Günnel, A., Herzog, R. and Sachs, E. (2014), ‘A note on preconditioners and scalar products in Krylov subspace methods for self-adjoint problems in Hilbert space’, Elect. Trans. Numer. Anal. 41, 1320.
Gustafsson, I. (1978), ‘A class of first order factorization methods’, BIT 18, 142156.
Haber, E. and Ascher, U. M. (2001), ‘Preconditioned all-at-once methods for large, sparse parameter estimation problems’, Inverse Probl. 17, 18471864.
Hackbusch, W. (1994), Iterative Solution of Large Sparse Systems of Equations, Springer.
Hackbusch, W. (1999), ‘A sparse matrix arithmetic based on ${\mathcal{H}}$ -matrices I: Introduction to ${\mathcal{H}}$ -matrices’, Computing 62, 89108.
Hackbusch, W., Khoromskij, B. K. and Sauter, S. (2000), On H2 -matrices. In Lectures on Applied Mathematics (Bungartz, H., Hoppe, R. and Zenger, C., eds), Springer, pp. 929.
Heil, M., Hazel, A. L. and Boyle, J. (2008), ‘Solvers for large-displacement fluid–structure interaction problems: Segregated versus monolithic approaches’, Comput. Mech. 43, 91101.
Henson, V. E. and Yang, U. M. (2000), ‘BoomerAMG: A parallel algebraic multigrid solver and preconditioner’, Appl. Numer. Math. 41, 155177.
Hestenes, M. R. and Stiefel, E. (1952), ‘Methods of conjugate gradients for solving linear problems’, J. Res. Nat. Bur. Stand. 49, 409436.
Hiptmair, R. and Xu, J. (2007), ‘Nodal auxiliary space preconditioning in H(curl) and H(div) spaces’, SIAM J. Numer. Anal. 45, 24832509.
Holland, R. M., Wathen, A. J. and Shaw, G. J. (2005), ‘Sparse approximate inverses and target matrices’, SIAM J. Sci. Comput. 26, 10001011.
HSL Mathematical Software Library (2013), A collection of Fortran codes for large scale scientific computation. www.hsl.rl.ac.uk
International Conference on Domain Decomposition Methods (2014). www.ddm.org/conferences.html
John, V. and Tobiska, L. (2000), ‘Numerical performance of smoothers in coupled multigrid methods for the parallel solution of the incompressible Navier–Stokes equations’, Internat. J. Numer. Meth. Fluids 33, 453473.
Jonsthovel, T. B., van Gijzen, M. B., MacLachlan, S. C., Vuik, C. and Scarpas, A. (2012), ‘Comparison of the deflated preconditioned conjugate gradient method and algebraic multigrid for composite materials’, Comput. Mech. 50, 321333.
Kay, D., Loghin, D. and Wathen, A. J. (2002), ‘A preconditioner for the steady-state Navier–Stokes equations’, SIAM J. Sci. Comput. 24, 237256.
Keller, C., Gould, N. I. M. and Wathen, A. J. (2000), ‘Constraint preconditioning for indefinite linear systems’, SIAM J. Matrix Anal. Appl. 21, 13001317.
Klawonn, A. (1998), ‘Block-triangular preconditioners for saddle point problems with a penalty term’, SIAM J. Sci. Comput. 19, 172184.
Klawonn, A. and Starke, G. (1999), ‘Block triangular preconditioners for nonsymmetric saddle point problems: Field-of-value analysis’, Numer. Math. 81, 577594.
Kolotilina, L. Y. and Yeremin, A. Y. (1993), ‘Factorized sparse approximate inverse preconditioning I: Theory’, SIAM J. Matrix Anal. Appl. 14, 4558.
Korzak, J. (1999), ‘Eigenvalue relations and conditions of matrices arising in linear programming’, Computing 62, 4554.
Laird, A. L. and Giles, M. B. (2002), Preconditioned iterative solution of the 2D Helmholtz equation. Report NA-02/12, Oxford University Computer Laboratory.
Lehoucq, R. B. and Sorensen, D. C. (1996), ‘Deflation techniques for an implicitly restarted Arnoldi iteration’, SIAM J. Matrix Anal. Appl. 17, 789821.
Li, X. S. (2005), ‘An overview of SuperLU: Algorithms, implementation and user interface’, ACM Trans. Math. Software 31, 302325.
Liesen, J. and Strakoš, Z. (2013), Krylov Subspace Methods: Principles and Analysis, Oxford University Press.
Livne, O. E. and Brandt, A. (2012), ‘Lean Algebraic Multigrid (LAMG): Fast graph Laplacian linear solver’, SIAM J. Sci. Comput. 34, B499B522.
Loghin, D. and Wathen, A. J. (2004), ‘Analysis of preconditioners for saddle-point problems’, SIAM J. Sci. Comput. 25, 20292049.
Magolu Monga Made, M., Beauwens, R. and Warzée, G. (2000), ‘Preconditioning of discrete Helmholtz operators perturbed by a diagonal complex matrix’, Commun. Numer. Methods Engng 16, 801817.
Málek, J. and Strakoš, Z. (2014), Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs, SIAM.
Manservisi, S. (2006), ‘Numerical analysis of Vanka-type solvers for steady Stokes and Navier–Stokes flows’, SIAM J. Numer. Anal. 44, 20252056.
Mardal, K.-A. and Winther, R. (2011), ‘Preconditioning discretizations of systems of partial differential equations’, Numer. Linear Algebra Appl. 18, 140.
Mathew, T. P. (2008), Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, Springer.
Meijerink, J. A. and van der Vorst, H. A. (1977), ‘An iterative solution method for linear systems of which the coefficient matrix is a symmetric $M$ -matrix’, Math. Comp. 31, 148162.
Meurant, G. A. (1999), Computer Solution of Large Linear Systems, North-Holland.
Murphy, M. F., Golub, G. H. and Wathen, A. J. (2000), ‘A note on preconditioning for indefinite linear systems’, SIAM J. Sci. Comput. 21, 19691972.
Neytcheva, M. (1999), talk presented at the first International Conference on Preconditioning, Minneapolis, 1999.
Ng, M. K. (2004), Iterative Methods for Toeplitz Systems, Oxford University Press.
Notay, Y. (2012), ‘Aggregation-based algebraic multigrid for convection–diffusion equations’, SIAM J. Sci. Comput. 34, A2288A2316.
O’Leary, D. P. (1991), ‘Yet another polynomial preconditioner for the conjugate gradient algorithm’, Linear Algebra Appl. 154–156, 377388.
Olshanskii, M. A. and Tyrtyshnikov, E. E. (2014), Iterative Methods for Linear Systems: Theory and Applications, SIAM.
Ong, M. E. G. (1997), ‘Hierarchical basis preconditioners in three dimensions’, SIAM J. Sci. Comput. 18, 479498.
Otto, K. (1996), ‘Analysis of preconditioners for hyperbolic partial differential equations’, SIAM J. Numer. Anal. 33, 21312165.
Paige, C. C. and Saunders, M. A. (1975), ‘Solution of sparse indefinite systems of linear equations’, SIAM J. Numer. Anal. 12, 617629.
Paige, C. C. and Saunders, M. A. (1982), ‘LSQR: An algorithm for sparse linear equations and sparse least squares’, ACM Trans. Math. Software 8, 4371.
Parks, M. L., de Sturler, E., Mackey, G., Johnson, D. D. and Maiti, S. (2006), ‘Recycling Krylov subspaces for sequences of linear systems’, SIAM J. Sci. Comput. 28, 16511674.
Pestana, J. and Wathen, A. J. (2013a), ‘Combination preconditioning of saddle point systems for positive definiteness’, Numer. Linear Algebra Appl. 20, 785808.
Pestana, J. and Wathen, A. J. (2013b), ‘On choice of preconditioner for minimum residual methods for non-Hermitian matrices’, J. Comput. Appl. Math. 249, 5768.
Pestana, J. and Wathen, A. J. (2015a), ‘A preconditioned MINRES method for nonsymmetric Toeplitz matrices’, SIAM J. Matrix Anal. Appl., to appear.
Pestana, J. and Wathen, A. J. (2015b), ‘Natural preconditioning and iterative methods for saddle point systems’, SIAM Rev. 57, 7191.
Phillips, E. G., Elman, H. C., Cyr, E. C., Shadid, J. N. and Pawlowski, R. P. (2014), A block preconditioner for an exact penalty formulation for stationary MHD. Computer Science report CS-TR-5032, University of Maryland.
Poulson, J., Engquist, B., Li, S. and Ying, L. (2013), ‘A parallel sweeping preconditioner for heterogeneous 3D Helmholtz equations’, SIAM J. Sci. Comput. 35, C194C212.
Quarteroni, A. and Valli, A. (1999), Domain Decomposition Methods for Partial Differential Equations, Oxford University Press.
Ramage, A. (1999), ‘A multigrid preconditioner for stabilised discretisations of advection–diffusion problems’, J. Comput. Appl. Math. 101, 187203.
Rees, T., Dollar, H. S. and Wathen, A. J. (2010a), ‘Optimal solvers for PDE-constrained optimization’, SIAM J. Sci. Comput. 32, 271298.
Rees, T., Stoll, M. and Wathen, A. J. (2010b), ‘All-at-once preconditioning in PDE-constrained optimization’, Kybernetika 46, 341360.
Rhebergen, S., Wells, G. N., Katz, R. F. and Wathen, A. J. (2014), ‘Analysis of block-preconditioners for models of coupled magma/mantle dynamics’, SIAM J. Sci. Comput. 36, A1960A1977.
Saad, Y. (1993), ‘A flexible inner-outer preconditioned GMRES algorithm’, SIAM J. Sci. Comput. 14, 461469.
Saad, Y. (1996), ‘ILUM: A multi-elimination ILU preconditioner for general sparse matrices’, SIAM J. Sci. Comput. 17, 830847.
Saad, Y. (2003), Iterative Methods for Sparse Linear Systems, second edition, SIAM.
Saad, Y. and Schultz, M. H. (1986), ‘GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems’, SIAM J. Sci. Statist. Comput. 7, 856869.
Sifuentes, J. A., Embree, M. and Morgan, R. B. (2013), ‘GMRES convergence for perturbed coefficient matrices, with application to approximate deflation preconditioning’, SIAM. J. Matrix Anal. Appl. 34, 10661088.
Silvester, D. J. and Wathen, A. J. (1994), ‘Fast iterative solution of stabilised Stokes systems II: Using general block preconditioners’, SIAM J. Numer Anal. 31, 13521367.
Simoncini, V. and Szyld, D. B. (2007), ‘Recent computational developments in Krylov subspace methods for linear systems’, Numer. Linear Algebra Appl. 14, 159.
Sleijpen, G. L. G. and Fokkema, D. R. (1993), ‘BiCGstab(ell) for linear equations involving unsymmetric matrices with complex spectrum’, Elect. Trans. Numer. Anal. 1, 1132.
Smith, B., Bjørstat, P. and Gropp, W. (1996), Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press.
Sonneveld, P. and van Gijzen, M. B. (2008), ‘IDR(s): A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations’, SIAM J. Sci. Comput. 31, 10351062.
Spielman, D. A. and Teng, S.-H. (2014), ‘Nearly-linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems’, SIAM J. Matrix Anal. Appl. 35, 835885.
Stoll, M. and Wathen, A. J. (2008), ‘Combination preconditioning and the Bramble–Pasciak $^{+}$ preconditioner’, SIAM J. Matrix Anal. Appl. 30, 582608.
Strang, G. (1986), ‘A proposal for Toeplitz matrix calculations’, Stud. Appl. Math. 74, 171176.
Tang, W.-P. and Wan, W. L. (2000), ‘Sparse approximate inverse smoother for multigrid’, SIAM J. Matrix Anal. Appl. 21, 12361252.
Taussky, O. (1972), ‘The role of symmetric matrices in the study of general matrices’, Linear Algebra Appl. 5, 147154.
Toselli, A. and Widlund, O. (2004), Domain Decomposition Methods: Algorithms and Theory. Vol. 34 of Springer Series in Computational Mathematics , Springer.
Trefethen, L. N. and Embree, M. (2005), Spectra and Pseudospectra, Princeton University Press.
Trottenberg, U., Oosterlee, C. W. and Schüler, A. (2000), Multigrid, Academic Press.
Tsuji, P., Engquist, B. and Ying, L. (2012), ‘A sweeping preconditioner for time-harmonic Maxwell’s equations with finite elements’, J. Comput. Phys. 231, 37703783.
van Gijzen, M. B., Erlangga, Y. A. and Vuik, C. (2007), ‘Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian’, SIAM J. Sci. Comput. 29, 19421958.
van der Vorst, H. A. (1992), ‘Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems’, SIAM J. Sci. Statist. Comput. 13, 631644.
van der Vorst, H. A. (2003), Iterative Krylov Methods for Large Linear Systems, Cambridge University Press.
Van Loan, C. F. (1992), Computational Frameworks for the Fast Fourier Transform, SIAM.
Vassilevski, P. S. (2008), Multilevel Block Factorization Preconditioners: Matrix-Based Analysis and Algorithms for Solving Finite Element Equations, Springer.
Verfürth, R. (1984), ‘A combined conjugate gradient-multigrid algorithm for the numerical solution of the Stokes problem’, IMA J. Numer. Anal. 4, 441455.
Wathen, A. J. (1986), ‘Realistic eigenvalue bounds for the Galerkin mass matrix’, IMA J. Numer. Anal. 7, 449457.
Wathen, A. J. (2007), ‘Preconditioning and convergence in the right norm’, Internat. J. Comput. Math. 84, 11991209.
Wathen, A. J. and Rees, T. (2009), ‘Chebyshev semi-iteration in preconditioning for problems including the mass matrix’, Elect. Trans. Numer. Anal. 34, 125135.
Wathen, A. J., Fischer, B. and Silvester, D. J. (1995), ‘The convergence rate of the minimum residual method for the Stokes problem’, Numer. Math. 71, 121134.
Wathen, M. P. (2014), Iterative solution of a mixed finite element discretisation of an incompressible magnetohydrodynamics problem. MSc dissertation, Department of Computer Science, University of British Columbia.
Widlund, O. (1978), ‘A Lanczos method for a class of nonsymmetric systems of linear equations’, SIAM J. Numer. Anal. 15, 801812.
Worley, P. H. (1991), ‘Limits on parallelism in the numerical solution of linear partial differential equations’, SIAM J. Sci. Statist. Comput. 12, 135.
Xu, J. (1992), ‘Iterative methods by space decomposition and subspace correction’, SIAM Rev. 34, 581613.
Ymbert, G., Embree, M. and Sifuentes, J. (2015), Approximate Murphy–Golub–Wathen preconditioning for saddle point problems. In preparation.
Yserentant, H. (1986), ‘On the multi-level splitting of finite element spaces’, Numer. Math. 49, 379412.

Related content

Powered by UNSILO

Preconditioning

  • A. J. Wathen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.