Skip to main content Accessibility help
×
Home

On the computation of measure-valued solutions

  • Ulrik S. Fjordholm (a1), Siddhartha Mishra (a2) and Eitan Tadmor (a3)

Abstract

A standard paradigm for the existence of solutions in fluid dynamics is based on the construction of sequences of approximate solutions or approximate minimizers. This approach faces serious obstacles, most notably in multi-dimensional problems, where the persistence of oscillations at ever finer scales prevents compactness. Indeed, these oscillations are an indication, consistent with recent theoretical results, of the possible lack of existence/uniqueness of solutions within the standard framework of integrable functions. It is in this context that Young measures – parametrized probability measures which can describe the limits of such oscillatory sequences – offer the more general paradigm of measure-valued solutions for these problems.

We present viable numerical algorithms to compute approximate measure-valued solutions, based on the realization of approximate measures as laws of Monte Carlo sampled random fields. We prove convergence of these algorithms to measure-valued solutions for the equations of compressible and incompressible inviscid fluid dynamics, and present a large number of numerical experiments which provide convincing evidence for the viability of the new paradigm. We also discuss the use of these algorithms, and their extensions, in uncertainty quantification and contexts other than fluid dynamics, such as non-convex variational problems in materials science.

Copyright

References

Hide All
Abgrall, R. and Congedo, P. M. (2013), ‘A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems’, J. Comput. Phys. 235, 828845.
Alibert, J. J. and Bouchitté, G. (1997), ‘Non-uniform integrability and generalized Young measures’, J. Convex Analysis 4, 129147.
Ambrosio, L., Gigli, N. and Savaré, G. (2005), Gradient Flows, Birkhäuser.
Avrin, J. and Xiao, C. (2014), ‘Convergence results for a class of spectrally hyperviscous models of 3-D turbulent flow’, J. Math. Anal. Appl. 409, 742751.
Ball, J. (1989), A version of the fundamental theorem for Young measures. In PDEs and Continuum Models of Phase Transitions (Rascle, M., Serre, D. and Slemrod, M., eds), Vol. 344 of Lecture Notes in Physics, pp. 207215.
Bardos, C. and Tadmor, E. (2015), ‘Stability and spectral convergence of Fourier method for nonlinear problems: On the shortcomings of the 2/3 de-aliasing method’, Numer. Math. 129, 749782.
Bardos, C. and Titi, E. (2007), ‘Euler equations for incompressible ideal fluids’, Russian Math. Surveys 62, 409451.
Bardos, C. and Titi, E. (2013), ‘Mathematics and turbulence: Where do we stand?J. Turbul. 14, 4276.
Barth, T. J. (1999), Numerical methods for gas-dynamics systems on unstructured meshes. In An Introduction to Recent Developments in Theory and Numerics of Conservation Laws, (Kroner, D., Ohlberger, M. and Rohde, C., eds), Vol. 5 of Lecture Notes in Computational Science and Engineering, Springer, pp. 195285.
Barth, T. J. (2013), Non-intrusive uncertainty propagation with error bounds for conservation laws containing discontinuities. In Uncertainty Quantification in Computational Fluid Dynamics, Vol. 92 of Lecture Notes in Computational Science and Engineering, Springer, pp. 158.
Beale, J. T., Kato, T. and Majda, A. (1984), ‘Remarks on the breakdown of smooth solutions for the 3D Euler equations’, Comm. Math. Phys. 94, 6166.
Bell, J. B., Colella, P. and Glaz, H. M. (1989), ‘A second-order projection method for the incompressible Navier–Stokes equations’, J. Comput. Phys. 85, 257283.
Benzoni-Gavage, S. and Serre, D. (2007), Multidimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications, Oxford University Press.
Bianchini, S. and Bressan, A. (2005), ‘Vanishing viscosity solutions of nonlinear hyperbolic systems’, Ann. of Math. (2) 161, 223342.
H. Bijl, D. Lucor, S. Mishra and C. Schwab, eds (2014), Uncertainty Quantification in Computational Fluid Dynamics, Vol. 92 of Lecture Notes in Computational Science and Engineering, Springer.
Brenier, Y., De Lellis, C. and Székelyhidi, L. Jr (2011), ‘Weak–strong uniqueness for measure-valued solutions’, Comm. Math. Phys. 305, 351361.
Bressan, A. (2000), Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford University Press.
Bressan, A., Crasta, G. and Piccoli, B. (2000), Well-Posedness of the Cauchy Problem for n × n Systems of Conservation Laws, Vol. 694 of Memoirs of the American Mathematical Society, AMS.
Buckmaster, T., De Lellis, C. , Isett, P. and Székelyhidi, L. Jr (2015), ‘Anomalous dissipation for $1/5$-Hölder Euler flows’, Ann. Math. 182, 127172.
Carrillo, J. A., Feireisl, E., Gwiazda, P. and Swierczewska-Gwiazda, A. (2015), Weak solutions for Euler systems with non-local interactions. arXiv:1512.03116
Carstensen, C. (2001), Numerical analysis of microstructure. In Theory and Numerics of Differential Equations (Durham 2000), Universitext, Springer, pp. 59–126.
Chemin, J.-Y. (1998), Perfect Incompressible Fluids, Clarendon Press, Oxford University Press.
Chen, G. Q. and Feldman, M. (2010), ‘Global solutions to shock reflections by large-angle wedges for potential flow’, Ann. of Math. 171, 10671182.
Chen, G. Q. and Glimm, J. (2012), ‘Kolmogorov’s theory of turbulence and inviscid limit of the Navier–Stokes equations in $\mathbb{R}^{3}$’, Comm. Math. Phys. 310, 267283.
Chiodaroli, E., De Lellis, C. and Kreml, O. (2015), ‘Global ill-posedness of the isentropic system of gas dynamics’, Comm. Pure Appl. Math. 68, 11571190.
Chorin, A. (1968), ‘Numerical solution of the Navier–Stokes equations’, Math. Comp. 22, 745762.
Chorin, A. and Marsden, J. (1993), A Mathematical Introduction to Fluid Mechanics, third edition, Springer.
Collins, C. and Luskin, M. (1989), The computation of the austenitic–martensitic phase transition. In Partial Differential Equations and Continuum Models of Phase Transitions, Vol. 344 of Lecture Notes in Physics, Springer, pp. 3450.
Constantin, P. (2007), ‘On the Euler equations of incompressible fluids’, Bull. Amer. Math. Soc. 44, 603621.
Constantin, P., Fefferman, C. and Majda, A. (1996), ‘Geometric constraints on potential singular solutions for the 3-D Euler equations’, Comm. Part. Diff. Equations 21, 559571.
Crandall, M. G. and Majda, A. (1980), ‘Monotone difference approximations for scalar conservation laws’, Math. Comput. 34, 121.
Dacarogna, B. (1989), Direct Methods in the Calculus of Variations, Vol. 78 of Applied Mathematical Sciences, Springer.
Dafermos, C. M. (2010), Hyperbolic Conservation Laws in Continuum Physics, Vol.325 of Grundlehren der Mathematischen Wissenschaften, Springer.
De Lellis, C. and Székelyhidi, L. Jr (2009), ‘The Euler equations as a differential inclusion’, Ann. of Math. (2) 170, 14171436.
De Lellis, C. and Székelyhidi, L. Jr (2010), ‘On the admissibility criteria for the weak solutions of Euler equations’, Arch. Rational Mech. Anal. 195, 225260.
De Simone, A. (1993), ‘Energy minimizers for large ferromagnetic bodies’, Arch. Rational Mech. Anal. 125, 99143.
Delort, J. M. (1991), ‘Existence de nappes de tourbillon en dimension deux’, J. Amer. Math. Soc. 4, 553586.
Demoulini, S., Stuart, D. M. A. and Tzavaras, A. E. (2012), ‘Weak–strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics’, Arch. Rational Mech. Anal. 205, 927961.
Després, B., Poëtte, G. and Lucor, D. (2009), ‘Uncertainty quantification for systems of conservation laws’, J. Comput. Phys. 228, 24432467.
DiPerna, R. J. (1985), ‘Measure-valued solutions to conservation laws’, Arch. Rational Mech. Anal. 88, 223270.
DiPerna, R. J. and Majda, A. (1987a), ‘Oscillations and concentrations in weak solutions of the incompressible fluid equations’, Comm. Math. Phys. 108, 667689.
DiPerna, R. J. and Majda, A. (1987b), ‘Concentrations in regularizations for 2-D incompressible flow’, Comm. Pure Appl. Math. 40, 301345.
E, W. and Kohn, R. (1991), ‘The initial-value problem for measure-valued solutions of a canonical $2\times 2$ system with linearly degenerate fields’, Comm. Pure Appl. Math. 44, 9811000.
Fjordholm, U. S. (2013), High-order accurate entropy stable numerical schemes for hyperbolic conservation laws. ETH Zürich dissertation 21025.
Fjordholm, U. S., Käppeli, R., Mishra, S. and Tadmor, E. (2016a), ‘Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws’ J. FoCM, to appear. doi:10.1007/s10208-015-9299-z
Fjordholm, U. S., Lanthaler, S. and Mishra, S. (2016b), Statistical solutions of hyperbolic conservation laws I: Theory. In preparation.
Fjordholm, U. S., Lye, K. O. and Mishra, S. (2016c), Computation of statistical solutions for systems of conservation laws. In preparation.
Fjordholm, U. S., Mishra, S. and Tadmor, E. (2012), ‘Arbitrarily high-order order accurate essentially non-oscillatory entropy stable schemes for systems of conservation laws’, SIAM J. Numer. Anal 50, 544573.
Fjordholm, U. S., Mishra, S. and Tadmor, E. (2013), ‘ENO reconstruction and ENO interpolation are stable’, FoCM 13, 139159.
Foiaş, C. (1972), ‘Statistical study of Navier–Stokes equations I’, Rend. Sem. Mat. Univ. Padova 48, 219348.
Foiaş, C. (1973), ‘Statistical study of Navier–Stokes equations II’, Rend. Sem. Mat. Univ. Padova 49, 9123.
Foiaş, C., Manley, O., Rosa, R. and Temam, R. (2001), Navier–Stokes Equations and Turbulence, Cambridge University Press.
Folland, G. B. (1999), Real Analysis, Wiley.
Frid, H. and Liu, I.-S. (1995), ‘Oscillation waves in Riemann problems inside elliptic regions for conservation laws of mixed type’, Z. Angew. Math. Phys. 46, 913931.
Frid, H. and Liu, I.-S. (1998), ‘Oscillation waves in Riemann problems for phase transitions’, Quart. Appl. Math. 56, 115135.
Fuchs, F., McMurry, A., Mishra, S., Risebro, N. H. and Waagan, K. (2011), ‘Approximate Riemann solvers and robust high-order finite volume schemes for multi-dimensional ideal MHD equations’, Comm. Comput. Phys 9, 324362.
Gérard, P. (1991), ‘Microlocal defect measures’, Comm. Part. Diff. Equations 16, 17611794.
Ghanem, R. G. and Spanos, P. D. (1991), Stochastic Finite Elements: A Spectral Approach, Springer.
R. Ghanem, D. Higdon and H. Owhadi, eds (2016), Handbook of Uncertainty Quantification, Springer.
Giles, M. (2008), ‘Multilevel Monte Carlo Path Simulation’, Oper. Res. 56, 607617.
Glimm, J. (1965), ‘Solutions in the large for nonlinear hyperbolic systems of equations’, Comm. Pure Appl. Math. 18, 697715.
Glimm, J., Grove, J. and Zhang, Y. (1999), Numerical calculation of Rayleigh–Taylor and Richtmyer–Meshkov instabilities for three dimensional axisymmetric flows in cylindrical and spherical geometries. Report LA-UR99-6796, Los Alamos Laboratory.
Godlewski, E. and Raviart, P.-A. (1991), Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer.
Godunov, S. K. (1961), ‘An interesting class of quasilinear systems’, Dokl. Acad. Nauk. SSSR 139, 521523.
Goodman, J., Kohn, R. and Reyna, L. (1986), ‘Numerical study of a relaxed variational problem from optimal design’, Comput. Meth. Appl. Mech. Engrg 57, 107127.
Gottlieb, D., Hussaini, M. Y. and Orszag, S. (1984), Theory and application of spectral methods. In Spectral Methods for Partial Differential Equations (Voigt, R. G. et al. , ed.), SIAM, pp. 154.
Gwiazda, P. (2005), ‘On measure-valued solutions to a two-dimensional gravity-driven avalanche flow model’, Math. Methods Appl. Sci. 28, 22012223.
Gwiazda, P., Swierczewska-Gwiazda, A. and Wiedemann, E. (2015), ‘Weak–strong uniqueness for measure-valued solutions of some compressible fluid models’, Nonlinearity 28, 38733890.
Harten, A., Engquist, B., Osher, S. and Chakravarty, S. R. (1987), ‘Uniformly high order accurate essentially non-oscillatory schemes III’, J. Comput. Phys. 71, 231303.
Hiltebrand, A. and Mishra, S. (2014), ‘Entropy stable shock capturing streamline diffusion space-time discontinuous Galerkin (DG) methods for systems of conservation laws’, Numer. Math. 126, 103151.
Hou, T. Y. (2008), ‘Blow-up or no blow-up? The interplay between theory and numerics’, Physica D 237, 19371944.
Ismail, F. and Roe, P. L. (2009), ‘Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks’, J. Comput. Phys. 228, 54105436.
Jaffre, J., Johnson, C. and Szepessy, A. (1995), ‘Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws’, Math. Model. Meth. Appl. Sci. 5, 367386.
Johnson, C. and Szepessy, A. (1987), ‘On the convergence of a finite element method for a nonlinear hyperbolic conservation law’, Math. Comput. 49(180), 427444.
Käppeli, R., Whitehouse, S. C., Scheidegger, S., Pen, U.-L. and Liebendörfer, M. (2011), ‘FISH: A three-dimensional parallel magnetohydrodynamics code for astrophysical applications’, Astrophys. J. (supplement) 195, 20.
Karamanos, G. S. and Karniadakis, G. E. (2000), ‘A spectral vanishing viscosity method for large-eddy simulations’, J. Comput. Phys. 163, 2250.
Kato, T. (1975), ‘The Cauchy problem for quasi-linear symmetric hyperbolic systems’, Arch. Rational Mech. Anal. 58, 181205.
Kinderlehrer, D. and Pedregal, P. (1991), ‘Characterizations of gradient Young measures’, Arch. Rational Mech. Anal. 115, 329365.
Krasny, R. (1986a), ‘A study of singularity formation in a vortex sheet by the point vortex approximation’, J. Fluid Mech. 167, 6593.
Krasny, R. (1986b), ‘Desingularization of periodic vortex sheet roll-up’, J. Comput. Phys. 65, 292313.
Kröner, D. and Zajaczkowski, W. M. (1996), ‘Measure-valued solutions of the Euler equations for ideal compressible polytropic fluids’, Math. Methods Appl. Sci. 19, 235252.
Kružkov, S. N. (1970), ‘First order quasilinear equations in several independent variables’, USSR Math. Sbornik 10, 217243.
Landau, L. D. and Lipschitz, E. M. (1987), Fluid Mechanics, second edition, Elsevier Butterworth Heinemann.
Lanthaler, S. and Mishra, S. (2015), ‘Computation of measure valued solutions for the incompressible Euler equations’, Math. Mod. Meth. Appl. Sci. (M3AS) 25, 20432088.
Laumer, S. (2014), Finite difference approach for the measure valued vanishing dispersion limit of Burgers’ equation. Master’s thesis, ETH Zürich.
Lax, P. D. (1957), ‘Hyperbolic systems of conservation laws II’, Comm. Pure Appl. Math. 10, 537566.
Lax, P. D. (1971), Shock waves and entropy. In Contributions to Nonlinear Functional Analysis (Zarantonello, E., ed.), Academic Press, pp. 603634.
Lax, P. D. and Levermore, C. D. (1983a), ‘The small dispersion limit for the KdV equation I’, Comm. Pure. Appl. Math. 36, 253290.
Lax, P. D. and Levermore, C. D. (1983b), ‘The small dispersion limit for the KdV equation II’, Comm. Pure. Appl. Math. 36, 571594.
Lax, P. D. and Levermore, C. D. (1983c), ‘The small dispersion limit for the KdV equation III’, Comm. Pure. Appl. Math. 36, 809829.
LeFloch, P. G., Mercier, J. M. and Rohde, C. (2002), ‘Fully discrete entropy conservative schemes of arbitrary order’, SIAM J. Numer. Anal. 40, 19681992.
Leonardi, F. and Mishra, S. (2016), A projection-finite difference method for computing measure-valued solutions of the incompressible Euler equations. In preparation.
LeVeque, R. J. (2002), Finite Volume Methods for Hyperbolic Problems, Cambridge University Press.
Lichtenstein, L. (1925), ‘Über einige Existenzprobleme der Hydrodynamik homogener, unzusammendrückbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsätze’, Math. Zeit. Phys. 23, 89154.
Lim, H., Yu, Y., Glimm, J., Li, X. L. and Sharp, D. H. (2008), ‘Chaos, transport and mesh convergence for fluid mixing’, Act. Math. Appl. Sinica 24, 355368.
Lions, P.-L. (1996), Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models, Oxford University Press.
Lopes Filho, M., Nussenzveig, H. J. and Tadmor, E. (2000), ‘Approximate solutions of the incompressible Euler equations with no concentrations’, Ann. de l’Institut Henri Poincaré (C) 17, 371412.
Luskin, M. (1996), On the computation of crystalline microstructure. In Acta Numerica,Vol. 5, Cambridge University Press, pp. 191257.
Lye, K. O. and Mishra, S. (2016), Multi-level Monte Carlo methods for computing measure-valued solutions of hyperbolic conservation laws. In preparation.
Majda, A. (1993), ‘Remarks on weak solutions for vortex sheets with a distinguished sign’, Indiana Univ. Math. J. 42, 921939.
Majda, A. and Bertozzi, A. (2002), Vorticity and Incompressible Flow, Cambridge University Press.
Málek, J., Nečas, J., Rokyta, M. and Ružička, M. (1996), Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman & Hall.
Marchioro, C. and Pulvirenti, M. (1994), Mathematical Theory of Incompressible Nonviscous Fluids, Vol. 96 of Applied Mathematical Sciences, Springer.
Mclaughlin, D. W. and Strain, J. A. (1994), ‘Computing the weak limit of KdV’, Comm. Pure Appl. Math. 47, 13191364.
Mishra, S. and Risebro, N. H. (2016), Computation of measure-valued solutions for a three phase flow model. In preparation.
Mishra, S. and Schwab, C. (2012), ‘Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data’, Math. Comput. 81(180), 19792018.
Mishra, S., Risebro, N. H., Schwab, C. and Tokareva, S. (2016), ‘Numerical solution of scalar conservation laws with random flux functions’, J. Uncertainty Quantification, to appear. Research report 2012-35, SAM ETH Zürich.
Mishra, S., Schwab, C. and Šukys, J. (2012a), ‘Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions’, J. Comput. Phys 231, 33653388.
Mishra, S., Schwab, C. and Šukys, J. (2012b), ‘Multi-level Monte Carlo finite volume methods for shallow water equations with uncertain topography in multi-dimensions’, SIAM J. Sci. Comput. 34, B761B784.
Mishra, S., Schwab, C. and Šukys, J. (2013), Monte Carlo and multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws. In Uncertainty Quantification in Computational Fluid Dynamics, Vol. 92 of Lecture Notes in Computational Science and Engineering, Springer, pp. 225294.
Mishra, S., Schwab, C. and Šukys, J. (2016), ‘Multi-level Monte Carlo finite volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered medium’, J. Comput. Phys. 312, 192217.
Murat, F. (1978), ‘Compacité par compensation’, Ann. Sc. Norm. Sup. Pisa 5, 489507.
Murat, F. (1979), Compacité par compensation II. In Proc. Int. Meeting ‘Recent Methods in Nonlinear Analysis (Giorgi, E. De, Magenes, E. and Mosco, U., eds), Pitagora Editrice, pp. 245256.
Murat, F. (1981), ‘Compacité par compensation: Condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant’, Ann. Sc. Norm. Sup. Pisa 8, 69102.
Nicolaides, R. A. and Walkington, N . J. (1993), ‘Computation of microstructure utilizing Young measure representations’, J. Intelligent Mat. Sys. Struct. 4, 457462.
Panov, E. Y. (1993), ‘Strong measure-valued solutions of a first-order quasilinear equation’, Moscow Univ. Math. Bull. 48, 1821.
Panov, E. Y. (1994), ‘On sequences of measure-valued solutions of a first-order quasilinear equation’, Mat. Sb. 185, 87106.
Pasquetti, R. (2006), ‘Spectral vanishing viscosity method for large-eddy simulation of turbulent flow’, J. Sci. Comput. 27, 365375.
Pedregal, P. (1996), ‘On the numerical analysis of non-convex variational problems’, Numer. Math. 74, 325336.
Roubíček, T. (1997), Relaxation in Optimization Theory and Variational Calculus, Walter de Gruyter.
Roy, A. and Acharya, A. (2006), ‘Size effects and idealized dislocation microstructure at small scales: Predictions of a phenomenological model of mesoscopic field dislocation mechanics: Part II’, J. Mech. Phys. Solids 54, 17111743.
Scheffer, V. (1993), ‘An inviscid flow with compact support in space-time’, J. Geom. Anal. 3, 343401.
Schochet, S. (1989), ‘Examples of measure-valued solutions’, Comm. Part. Diff. Equations 14, 545575.
Schochet, S. (1995), ‘The weak vorticity formulation of the $2$-D Euler equations and concentration–cancellation’, Comm. Part. Diff. Equations 20, 10771104.
Schonbek, M. (1982), ‘Convergence of solutions to nonlinear dispersion equations’, Comm. Part. Diff. Equations 7, 9591000.
Shnirelman, A. (2000), ‘Weak solutions with decreasing energy of the incompressible Euler equations’, Comm. Math. Phys. 210, 541603.
Székelyhidi, L. (2011), ‘Weak solutions to the incompressible Euler equations with vortex sheet initial data’, CR Math. Acad. Sci. Paris 349, 10631066.
Székelyhidi, L. Jr and Wiedemann, E. (2012), ‘Young measures generated by ideal incompressible fluid flows’, Arch. Rational Mech. Anal. 206, 333366.
Tadmor, E. (1987), ‘The numerical viscosity of entropy stable schemes for systems of conservation laws I’, Math. Comput. 49, 91103.
Tadmor, E. (1989), ‘Convergence of spectral methods for nonlinear conservation laws’, SIAM J. Numer. Anal. 26, 3044.
Tadmor, E. (2003), Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. In Acta Numerica, Vol. 12, Cambridge University Press, pp. 451512.
Tadmor, E. (2012), ‘A review of numerical methods for nonlinear partial differential equations’, Bull. Amer. Math. Soc. 49, 507554.
Tartar, L. (1979), Compensated compactness and applications to partial differential equations. In Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, Pitman, pp. 136212.
Tartar, L. (1990), ‘H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations’, Proc. Roy. Soc. Edin. Sect. A 115, 193230.
Tryoen, J., Le Maître, O., Ndjinga, M. and Ern, A. (2010), ‘Intrusive projection methods with upwinding for uncertain non-linear hyperbolic systems’, J. Comput. Phys. 229, 64856511.
Xiu, D. and Hesthaven, J. S. (2005), ‘High-order collocation methods for differential equations with random inputs’, SIAM J. Sci. Comput. 27, 11181139.
Young, L. C. (1969), Lectures on the Calculus of Variations and Optimal Control Theory, Saunders.
Yudovich, V. I. (1963), ‘Non-stationary flow of an ideal incompressible liquid’, Zh. Vych. Mat. 3, 10321066.

On the computation of measure-valued solutions

  • Ulrik S. Fjordholm (a1), Siddhartha Mishra (a2) and Eitan Tadmor (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed