Agoshkov, V.I. (1988), ‘Poincaré-Steklov operators and domain decomposition methods in finite dimensional spaces’, in First Int. Symp. Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Golub, G.H., Meurant, G.A. and Périaux, J., eds), SIAM (Philadelphia, PA).
Agoshkov, V.I. and Lebedev, V.I. (1985), ‘The Poincaré–Steklov operators and the domain decomposition methods in variational problems’, in Computational Processes and Systems Nauka (Moscow) 173–227. In Russian.
Arnold, D.N. and Brezzi, F. (1985), ‘Mixed and nonconforming finite element methods: Implementation, post processing and error estimates’, Math. Model. Numer. Anal. 19, 7–32.
Ashby, S.F., Saylor, P.E. and Scroggs, J.S. (1992), ‘Physically motivated domain decomposition preconditioners’, in Proc. Second Copper Mountain Conf. on Iterative Methods, Vol. 1, Comput. Math. Group, University of Colorado at Denver.
Astrakhantsev, G.P. (1978), ‘Method of fictitious domains for a second-order elliptic equation with natural boundary conditions’, USSR Comput. Math. Math. Phys. 18, 114–121.
Atamian, C., Dinh, Q.V., Glowinski, R., He, J. and Périaux, J. (1991), ‘Control approach to fictitious-domain methods application to fluid dynamics and electromagnetics’, in Fourth Int. Symp. Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Kuznetsov, Y.A., Meurant, G.A., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Axelsson, O. and Vassilevski, P. (1990), ‘Algebraic multilevel preconditioning methods, II’, SIAM J. Numer. Anal. 27, 1569–1590.
Babuška, I. (1957), ‘Über Schwarzsche Algorithmen in partielle Differentialgleichungen der mathematischen Physik’, ZAMM 37 (7/8), 243–245.
Babuška, I., Craig, A., Mandel, J. and Pitkäranta, J. (1991), ‘Efficient preconditioning for the p-version finite element method in two dimensions’, SIAM J. Numer. Anal. 28(3), 624–661.
Bank, R.E., Dupont, T.F. and Yserentant, H. (1988), ‘The hierarchical basis multigrid method’, Numer. Math. 52, 427–458.
Berger, M. and Bokhari, S. (1987), ‘A partitioning strategy for nonuniform problems on multiprocessors’, IEEE Trans. Comput. 36, 570–580.
Bernardi, C. and Maday, Y. (1992), ‘Approximations spectral de problèmes aux limites elliptiques’, in Mathematiques et Applications, Vol. 10, Springer (Paris).
Bernardi, C., Maday, Y. and Patera, A. (1989), ‘A new nonconforming approach to domain decomposition: the mortar element method’, Nonlinear Partial Differential Equations and their Applications (Brezis, H. and Lions, J.L., eds), Pitman (London).
Bernardi, C., Debit, N. and Maday, Y. (1990), ‘Coupling finite element and spectral methods’, Math. Comput. 54, 21–39.
Bjørstad, P.E. and Skogen, M. (1992), ‘Domain decomposition algorithms of Schwarz type, designed for massively parallel computers’, Fifth Int. Symp. Domain Decomposition Methods for Partial Differential Equations (Chan, T.F., Keyes, D.E., Meurant, G.A., Scroggs, J.S. and Voigt, R.G., eds), SIAM (Philadelphia, PA).
Bjørstad, P.E. and Widlund, O.B. (1984), ‘Solving elliptic problems on regions partitioned into substructures’, Elliptic Problem Solvers II (Birkhoff, G. and Schoenstadt, A., eds), Academic (London), 245–256.
Bjørstad, P.E. and Widlund, O.B. (1986), ‘Iterative methods for the solution of elliptic problems on regions partitioned into substructures’, SIAM J. Numer. Anal. 23 (6), 1093–1120.
Bjørstad, P.E. and Widlund, O.B. (1989), ‘To overlap or not to overlap: A note on a domain decomposition method for elliptic problems’, SIAM J. Sci. Stat. Comput. 10 (5), 1053–1061.
Börgers, C. (1989), ‘The Neumann–Dirichlet domain decomposition method with inexact solvers on the subdomains’, Numer. Math. 55, 123–136.
Börgers, C. and Widlund, O.B. (1990), ‘On finite element domain imbedding methods’, SIAM J. Numer. Anal. 27(4), 963–978.
Bornemann, F. and Yserentant, H. (1993), ‘A basic norm equivalence for the theory of multilevel methods’, Num. Math. 64, 455–476.
Bourgat, J.-F., Glowinski, R., Le Tallec, P. and Vidrascu, M. (1989), ‘Variational formulation and algorithm for trace operator in domain decomposition calculations’, in Second Int. Conf. on Domain Decomposition Methods (Chan, T., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Bramble, J.H. and Pasciak, J.E. (1988), ‘A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems’, Math. Comput. 50, 1–18.
Bramble, J.H. and Xu, J. (1991), ‘Some estimates for a weighted L^{2} projection’, Math. Comput. 56, 463–476.
Bramble, J.H., Ewing, R.E., Pasciak, J.E. and Schatz, A.H. (1988), ‘A preconditioning technique for the efficient solution of problems with local grid refinement’, Comput. Meth. Appl. Mech. Engrg 67, 149–159.
Bramble, J.H., Ewing, R.E., Parashkevov, R.R. and Pasciak, J.E. (1992), ‘Domain decomposition methods for problems with partial refinement’, SIAM J. Sci. Comput. 13(1), 397–410.
Bramble, J.H., Pasciak, J.E. and Schatz, A.H. (1986a), ‘The construction of preconditioners for elliptic problems by substructuring, I’, Math. Comput. 47, 103–134.
Bramble, J.H., Pasciak, J.E. and Schatz, A.H. (1986b), ‘An iterative method for elliptic problems on regions partitioned into substructures’, Math. Comput. 46(173), 361–369.
Bramble, J.H., Pasciak, J.E. and Schatz, A.H. (1989), ‘The construction of preconditioners for elliptic problems by substructuring, IV’, Math. Comput. 53, 1–24.
Bramble, J.H., Pasciak, J.E. and Xu, J. (1990), ‘Parallel multilevel preconditioners’ Math. Comput. 55, 1–22.
Bramble, J.H., Pasciak, J.E., Wang, J. and Xu, J. (1991), ‘Convergence estimates for product iterative methods with applications to domain decomposition’, Math. Comput. 57(195), 1–21.
Brenner, S.C. (1993), ‘Two-level additive Schwarz preconditioners for nonconforming finite element methods’, in Proc. Seventh Int. Symp. on Domain Decomposition Methods for Partial Differential Equations, to appear.
Brezzi, F. and Fortin, M. (1991), Mixed and Hybrid Finite Element Methods, Springer (Berlin).
Buzbee, B.L., Dorr, F., George, J. and Golub, G. (1971), ‘The direct solution of the discrete poisson equation on irregular regions’, SIAM J. Numer. Anal. 11, 722–736.
Cai, X.-C. (1991), ‘Additive Schwarz algorithms for parabolic convection-diffusion equations’, Numer. Math. 60(1), 41–61.
Cai, X.-C. (1993), ‘Multiplicative Schwarz methods for parabolic problems’, SIAM J. Sci. Comput., to appear.
Cai, X.-C. and Widlund, O. (1992), ‘Domain decomposition algorithm for indefinite elliptic problems’, SIAM J. Sci. Comput. 13(1), 243–258.
Cai, X.-C. and Widlund, O. (1993), ‘Multiplicative Schwarz algorithms for some nonsymmetric and indefinite problems’, SIAM J. Numer. Anal. 30(4), 936–952.
Cai, X.-C., Gropp, W.D. and Keyes, D.E. (1992), ‘A comparison of some domain decomposition algorithms for nonsymmetric elliptic problems’, in Fifth Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Chan, T.F., Keyes, D.E., Meurant, G.A., Scroggs, J.S. and Voigt, R.G., eds), SIAM (Philadelphia, PA).
Canuto, C. and Funaro, D. (1988), ‘The Schwarz algorithm for spectral methods’, SIAM J. Numer. Anal. 25(1), 24–40.
Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A. (1988), Spectral Methods in Fluid Dynamics, Springer (Berlin).
Chan, T.F. (1987), ‘Analysis of preconditioners for domain decomposition’, SIAM J. Numer. Anal. 24(2), 382–390.
Chan, T.F. and Shao, J. (1993), ‘Optimal coarse grid size in domain decomposition’, Technical Report 93–24, UCLA CAM Report, Los Angeles, CA 90024–1555.
Chan, T.F. and Goovaerts, D. (1992), ‘On the relationship between overlapping and nonoverlapping domain decomposition methods’, SIAM J. Matrix Anal. Appl. 13(2), 663.
Chan, T.F. and Hou, T.Y. (1991), ‘Eigendecompositions of domain decomposition interface operators for constant coefficient elliptic problems’, SIAM J. Sci. Comput. 12(6), 1471–1479.
Chan, T.F. and Keyes, D.F. (1990), ‘Interface preconditioning for domain decomposed convection diffusion operators’, in Third Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Chan, T., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Chan, T.F. and Mathew, T.P. (1992), ‘The interface probing technique in domain decomposition’, SIAM J. Matrix Anal. Appl. 13(1), 212–238.
Chan, T.F. and Mathew, T. (1993), ‘Domain decomposition preconditioners for convection diffusion problems’, in Domain Decomposition Methods for Partial Differential Equations (Quarteroni, A., ed.), American Mathematical Society (Providence, RI), to appear.
Chan, T.F. and Resasco, D.C. (1985), ‘A survey of preconditioners for domain decomposition’, Technical Report /DCS/RR-414, Yale University.
Chan, T.F. and Resasco, D.C. (1987), ‘Analysis of domain decomposition preconditioners on irregular regions’, in Advances in Computer Methods for Partial Differential Equations – VI (Vichnevetsky, R. and Stepleman, R., eds), IMACS, 317–322.
Chan, T.F., Hou, T.Y. and Lions, P.L. (1991a), ‘Geometry related convergence results for domain decomposition algorithms’, SIAM J. Numer. Anal. 28(2), 378.
Chan, T.F., Weinan, E. and Sun, J. (1991b), ‘Domain decomposition interface preconditioners for fourth order elliptic problems’, Appl. Numer. Math. 8, 317–331.
Chan, T.F., Keyes, D.E., Meurant, G.A., Scroggs, J.S. and Voigt, R.G., eds (1992a), Fifth Conf. on Domain Decomposition Methods for Partial Differential Equations, SIAM (Philadelphia, PA).
Chan, T.F., Mathew, T.P. and Shao, J.-P. (1992b), ‘Efficient variants of the vertex space domain decomposition algorithm’, Technical Report CAM 92-07, Department of Mathematics, UCLA, to appear in SIAM J. Sci. Comput.
Chan, T.F., Glowinski, R., Périaux, J. and Widlund, O., eds (1989), Second Int. Conf. on Domain Decomposition Methods, SIAM (Philadelphia, PA).
Chan, T., Glowinski, R., Périaux, J. and Widlund, O., eds (1990), Third Int. Symp. on Domain Decomposition Methods for Partial Differential Equations, SIAM (Philadelphia, PA).
Chin, R.C.Y., Hedstrom, G.W., McGraw, J.R. and Howes, F.A. (1986), ‘Parallel computation of multiple scale problems’, in New Computing Environments: Parallel, Vector and Systolic (Wouk, A., ed.) SIAM (Philadelphia, PA).
Courant, R. and Hilbert, D. (1962), Methods of Mathematical Physics, Vol. 2, Interscience (New York).
Cowsar, L.C. (1993), ‘Dual variable Schwarz methods for mixed finite elements’, Technical Report TR93-09, Department of Mathematical Sciences, Rice University.
Cowsar, L.C. and Wheeler, M.F. (1991), ‘Parallel domain decomposition method for mixed finite elements for elliptic partial differential equations’, in Fourth Int. Symp.on Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Kuznetsov, Y.A., Meurant, G.A., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Cowsar, L.C., Mandel, J. and Wheeler, M.F. (1993), ‘Balancing domain decomposition for mixed finite elements’, Technical Report TR93-08, Department of Mathematical Sciences, Rice University.
Dawson, C.N. and Du, Q. (1991), ‘A domain decomposition method for parabolic equations based on finite elements’, in Fourth Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Kuznetsov, Y.A.Meurant, G.A., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Dawson, C., Du, Q. and Dupont, T.F., (1991), ‘A finite difference domain decomposition algorithm for numerical solution of the heat equation’, Math. Comput. 57, 195.
De Roeck, Y.-H. (1989), ‘A local preconditioner in a domain-decomposed method’, Technical Report TR89/10, Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, Toulouse, France.
De Roeck, Y.-H. and Le Tallec, P. (1991), ‘Analysis and test of a local domain decomposition preconditioner’, in Fourth Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Kuznetsov, Y., Meurant, G., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Despres, B. (1991), ‘Methodes de decomposition de domaines pour les problemes de propagation d'ondes en regime harmoniques’, PhD thesis, University of Paris IX, Dauphine.
Dinh, Q., Glowinski, R. and Périaux, J. (1984), ‘Solving elliptic problems by domain decomposition methods with applications’, in Elliptic Problem Solvers II (Birkhoff, G. and Schoenstadt, A., eds), Academic (New York), 395–426.
Dryja, M. (1982), ‘A capacitance matrix method for Dirichlet problem on polygon region’, Numer. Math. 39, 51–64.
Dryja, M. (1984), ‘A finite element-capacitance method for elliptic problems on regions partitioned into subregions’, Numer. Math. 44, 153–168.
Dryja, M. (1988), ‘A method of domain decomposition for 3-D finite element problems’, in First Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Golub, G.H., Meurant, G.A. and Périaux, J., eds) SIAM (Philadelphia, PA).
Dryja, M. (1989), ‘An additive Schwarz algorithm for two- and three-dimensional finite element elliptic problems’, in Second Int. Conf. on Domain Decomposition Methods (Chan, T., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Dryja, M. (1991), ‘Substructuring methods for parabolic problems’, in Fourth Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Kuznetsov, Y.A., Meurant, G.A., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Dryja, M. and Widlund, O.B. (1987), ‘An additive variant of the Schwarz alternating method for the case of many subregions’, Technical Report 339, also Ultra-computer Note 131, Department of Computer Science, Courant Institute.
Dryja, M. and Widlund, O.B. (1989a), ‘On the optimality of an additive iterative refinement method’, in Proc. Fourth Copper Mountain Conf. on Multigrid Methods, SIAM (Philadelphia, PA) 161–170.
Dryja, M. and Widlund, O.B. (1989b), ‘Some domain decomposition algorithms for elliptic problems’, in Iterative Methods for Large Linear Systems (Hayes, L. and Kincaid, D., eds), Academic (San Diego, CA), 273–291.
Dryja, M. and Widlund, O.B. (1990), ‘Towards a unified theory of domain decomposition algorithms for elliptic problems’, in Third Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Chan, T., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM(Philadelphia, PA).
Dryja, M. and Widlund, O.B. (1992a), ‘Additive Schwarz methods for elliptic finite element problems in three dimensions’, in Fifth Conf.on Domain Decomposition Methods for Partial Differential Equations (Chan, T.F., Keyes, D.E., Meurant, G.A., Scroggs, J.S. and Voigt, R.G., eds), SIAM (Philadelphia, PA).
Dryja, M. and Widlund, O.B. (1992b), ‘Domain decomposition algorithms with small overlap’, Technical Report 606, Department of Computer Science, Courant Institute, to appear in SIAM J. Sci. Comput.
Dryja, M. and Widlund, O.B. (1993a), ‘Schwarz methods of Neumann–Neumann type for three-dimensional elliptic finite element problems’, Technical Report 626, Department of Computer Science, Courant Institute.
Dryja, M. and Widlund, O.B. (1993b), ‘Some recent results on Schwarz type domain decomposition algorithms’, in Sixth Conf. on Domain Decomposition Methods for Partial Differential Equations (Quarteroni, A., ed.), American Mathematical Society (Providence, RI), toappear. Technical Report 615, Department of Computer Science, Courant Institute.
Dryja, M., Smith, B.F. and Widlund, O.B. (1993), ‘Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions’, Technical Report 638, Department of Computer Science, Courant Institute. SIAM J. Numer. Anal., submitted.
Ernst, O. and Golub, G. (1992), ‘A domain decomposition approach to solving the helmholtz equation with a radiation boundary condition’, Technical Report 92-08, Stanford University, Computer Science Department, Numerical Analysis Project, Stanford, CA 94305.
Ewing, R.E. and Wang, J. (1991), ‘Analysis of the Schwarz algorithm for mixed finite element methods’, RAIRO, Math. Modell. Numer. Anal. 26(6), 739–756.
Farhat, C. and Lesoinne, M. (1993), ‘Automatic partitioning of unstructured meshes for the parallel solution of problems in computational mechanics’, Int. J. Numer. Meth. Engrg 36, 745–764.
Farhat, C. and Roux, F.X. (1992), ‘An unconventional domain decomposition method for an efficient parallel solution of large scale finite element systems’, SIAM J. Sci. Comput. 13, 379–396.
Finogenov, S.A. and Kuznetsov, Y.A. (1988), ‘Two-stage fictitious components method for solving the Dirichlet boundary value problem’, Sov. J. Numer. Anal. Math. Modell. 3(4), 301–323.
Fischer, P.F. and Rønquist, E.M. (1993), ‘Spectral element methods for large scale parallel Navier–Stokes calculations’, in Second Int. Conf. on Spectral and High Order Methods for PDE's. Proc. ICOSAHOM 92, a conference held in Montpellier, France, June 1992. To appear in Comput. Meth. Appl. Mech. Engrg.
Fortin, M. and Aboulaich, R. (1988), ‘Schwarz's decomposition method for incompressible flow problems’, in First Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Golub, G.H., Meurant, G.A. and Périaux, J., eds), SIAM(Philadelphia, PA).
Fox, G. (1988), ‘A review of automatic load balancing and decomposition methods for the hypercube’, in Numerical Algorithms for Modern Parallel Computers (Schultz, M., ed.), Springer (Berlin), 63–76.
Freund, R.W., Golub, G.H. and Nachtigal, N. (1992), ‘Iterative solution of linear systems’, Acta Numerica, Cambridge University Press (Cambridge), 57–100.
Funaro, D., Quarteroni, A. and Zanolli, P. (1988), ‘An iterative procedure with interface relaxation for domain decomposition methods’, SIAM J. Numer. Anal. 25, 1213–1236.
Garbey, M. (1992), ‘Domain decomposition to solve layers and singular perturbation problems’, in Fifth Conf. on Domain Decomposition Methods for Partial Differential Equations (Chan, T.F., Keyes, D.E., Meurant, G.A., Scroggs, J.S. and Voigt, R.G., eds), SIAM (Philadelphia, PA).
Gastaldi, F., Quarteroni, A. and Sacchi-Landriani, G. (1990), ‘On the coupling of two-dimensional hyperbolic and elliptic equations: analytical and numerical approach’, in Domain Decomposition Methods for Partial Differential Equations (Chan, T., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA) 23–63.
Girault, V. and Raviart, P.-A. (1986), Finite Element Approximation of the Navier–Stokes Equations: Theory and Algorithms, Springer (Berlin).
Glowinski, R. and Wheeler, M.F. (1988), ‘Domain decomposition and mixed finite element methods for elliptic problems’, in First Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Golub, G.H., Meurant, G.A. and Périaux, J., eds), SIAM (Philadelphia, PA).
Glowinski, R., Golub, G.H., Meurant, G.A. and Périaux, J., eds (1988), Proc. First Int. Symp. on Domain Decomposition Methods for Partial Differential Equations, SIAM (Philadelphia, PA).
Glowinski, R., Kinton, W. and Wheeler, M.F. (1990a), ‘Acceleration of domain decomposition algorithms for mixed finite elements by multilevel methods’, in Third Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Chan, T., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Glowinski, R., Kuznetsov, Y.A., Meurant, G.A., Périaux, J. and Widlund, O., eds (1991), Fourth Int. Symp. on Domain Decomposition Methods for Partial Differential Equations, SIAM (Philadelphia, PA).
Glowinski, R., Périaux, J. and Terrasson, G. (1990b), ‘On the coupling of viscous and inviscid models for compressible fluid flows via domain decomposition’, in Domain Decomposition Methods for Partial Differential Equations (Chan, T., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Golub, G. and Mayers, D. (1984), ‘The use of preconditioning over irregular regions’, in Computing Methods in Applied Sciences and Engineering, VI (Glowinski, R. and Lions, J.L., eds), North-Holland (Amsterdam, New York, Oxford) 3–14.
Goovaerts, D. (1989), ‘Domain decomposition methods for ellipticpartial differential equations’, PhD thesis, Department of Computer Science, Catholic University of Leuven.
Goovaerts, D., Chan, T. and Piessens, R. (1991), ‘The eigenvalue spectrum of domain decomposed preconditioners’, Appl. Numer. Math. 8, 389–410.
Griebel, M. (1991), ‘Multilevel algorithms considered as iterative methods on indefinite systems’, Inst. für Informatik, Tech. Univ. Munchen, SFB 342/29/91A.
Griebel, M. and Oswald, P. (1993), ‘Remarks on the abstract theory of additive and multiplicative Schwarz algorithms’, Inst. für Informatik, Tech. Univ. Munchen, SFB 342/6/93A.
Gropp, W.D. (1992), ‘Parallel computing and domain decomposition’, in Fifth Conf. on Domain Decomposition Methods for Partial Differential Equations (Chan, T.F., Keyes, D.E., Meurant, G.A., Scroggs, J.S. and Voigt, R.G., eds), SIAM (Philadelphia, PA).
Gropp, W. and Keyes, D. (1993), ‘Domain decomposition as a mechanism for using asymptotic methods’, in Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters (Kaper, H. and Garbey, M., eds), Vol. 384, NATO ASI Series C, 93–106.
Gropp, W. and Smith, B. F. (1992), ‘Experiences with domain decomposition in three dimensions: overlapping Schwarz methods’, Mathematics and Computer Science Division, Argonne National Laboratory, to appear in Proc. Sixth Int. Symp. on Domain Decomposition Methods.
Hackbusch, W. (1993), Iterative Methods for Large Sparse Linear Systems, Springer (Heidelberg).
Hedstrom, G.W. and Howes, F.A. (1990), ‘Domain decomposition for a boundary value problem with a shock layer’, in Third Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Chan, T.F., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
D'Hennezel, F. (1992), ‘Domain decomposition method with non-symmetric interface operator‘, Fifth Conf. on Domain Decomposition Methods for Partial Differential Equations (Chan, Tony F., Keyes, David E., Meurant, Gérard A., Scroggs, Jeffrey S. and Voigt, Robert G., eds), SIAM (Philadelphia, PA).
Hoffmann, K.-H. and Zou, J. (1992)’, Solution of biharmonic problems by the domain decomposition method‘, Technical Report No. 387, DFG-SPP, Technical University of Munich.
Kang, L. S. (1987), Parallel Algorithms and Domain Decomposition, Wuhan University Press (China). In Chinese.
Kernighan, B. and Lin, S. (1970), ‘An efficient heuristic procedure for partitioning graphs’, Bell Systems Tech. J. 29, 291–307.
Keyes, D.E. and Gropp, W.D. (1987), ‘A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation’, SIAM J. Sci. Comput. 8 (2), s166–s202.
Keyes, D.E. and Gropp, W.D. (1989), ‘Domain decomposition with local mesh refinement’, Technical Report YALEU/DCS/RR-726, Yale University.
Kron, G. (1953), ‘A set of principles to interconnect the solutions of physical systems’, J. Appl. Phys. 24(8), 965.
Kuznetsov, Y.A. (1988), ‘New algorithms for approximate realization of implicit difference schemes’, Sov. J. Numer. Anal. Math. Modell. 3, 99–114.
Kuznetsov, Y.A. (1990), ‘Domain decomposition methods for unsteady convection-diffusion problems’, in IXth Int. Conf. on Computing Methods in Applied Science and Engineering (Glowinski, R. and Lions, J.L., eds), INRIA (Paris) 327–344.
Kuznetsov, Y.A. (1991), ‘Overlapping domain decomposition methods for feproblems with elliptic singular perturbed operators’, in Fourth Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Kuznetsov, Y.A., Meurant, G.A., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Laevsky, Yu. M. (1992), ‘Direct domain decomposition method for solving parabolic equations’, Preprint no. 940, Novosibirsk, Computing Center Siberian Branch Academy of Sciences. In Russian.
Laevsky, Yu. M. (1993), ‘On the domain decomposition method for parabolic problems’, Bull. Novosibirsk Comput. Center 1, 41–62.
Le Tallec, P. (1994), ‘Domain decomposition methods in computational mechanics’, J. Comput. Mech. Adv., to appear.
Le Tallec, P., De Roeck, Y.-H. and Vidrascu, M. (1991), ‘Domain-decomposition methods for large linearly elliptic three-dimensional problems’, J. Comput. Appl. Math. 34.
Lebedev, V.I. (1986), Composition Methods, USSR Academy of Sciences, Moscow. In Russian.
Lions, P.L. (1988), ‘On the Schwarz alternating method. I.’, in First Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Golub, G.H., Meurant, G.A. and Périaux, J., eds), SIAM (Philadelphia, PA).
Lions, P.L. (1989), ‘On the Schwarz alternating method. II, in Second Int. Conf. on Domain Decomposition Methods (Chan, T., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Lions, J.-L. and Magenes, E. (1972), Nonhomogeneous Boundary Value Problems and Applications, Vol. I, Springer (New York, Heidelberg, Berlin).
Tao, Lu, Shih, T. and Liem, C. (1992), Domain Decomposition Methods: New Numerical Techniques for Solving PDE, Science Publishers (Beijing, China).
Maday, Y. and Patera, A.T. (1989), ‘Spectral element methods for the Navier–Stokes equations’, in State of the Art Surveys in Computational Mechanics (Noor, A.K. and Oden, J.T., eds), ASME (NewYork).
Mandel, J. (1989a), ‘Efficient domain decomposition preconditioning for the p-version finite element method in three dimensions’, Technical Report, Computational Mathematics Group, University of Colorado at Denver.
Mandel, J. (1989b), ‘Two-level domain decomposition preconditioning for the p-version finite element version in three dimensions’, Int. J. Numer. Meth. Engrg, 29, 1095–1108.
Mandel, J. (1990), ‘Hierarchical preconditioning and partial orthogonalization for the p-version finite element method’, in Third Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Chan, T.F., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Mandel, J. (1992), ‘Balancing domain decomposition’, Commun. Numer. Meth. Engrg 9, 233–241.
Mandel, J. and Brezina, M. (1992), ‘Balancing domain decomposition: Theory and computations in two and three dimensions’, Technical Report, Computational Mathematics Group, University of Colorado at Denver.
Mandel, J. and McCormick, S. (1989), ‘Iterative solution of elliptic equations with refinement: The model multi-level case’, in Second Int. Conf, on Domain Decomposition Methods (Chan, T., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Marchuk, G.I., Kuznetsov, Y.A. and Matsokin, A.M. (1986), ‘Fictitious domain and domain decomposition methods’, Sov. J. Numer. Anal. Math. Modell. 1, 3–61.
Marini, L.D. and Quarteroni, A. (1989), ‘A relaxation procedure for domain decomposition methods using finite elements’, Numer. Math. 56, 575–598.
Mathew, T.P. (1989), ‘Domain decomposition and iterative refinement methods for mixed finite element discretisations of elliptic problems’, PhD thesis, Courant Institute of Mathematical Sciences. Technical Report 463, Department of Computer Science, Courant Institute.
Mathew, T.P. (1993a), ‘Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part I: Algorithms and numerical results’, Num. Math. 65(4), 445–468.
Mathew, T.P. (1993b), ‘Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part II: Theory’, Num. Math. 65(4), 469–492.
Matsokin, A.M. and Nepomnyaschikh, S.V. (1985), ‘A Schwarz alternating method in a subspace’, Sov. Math. 29(10), 78–84.
McCormick, S. (1984), ‘Fast adaptive composite grid (FAC) methods’, in Defect Correction Methods: Theory and Applications (Böhmer, K. and Stetter, H.J., eds), Computing Supplement 5, Springe (Wien), 115–121.
McCormick, S.F. (1989), Multilevel Adaptive Methods for Partial Differential Equations, SIAM (Philadelphia, PA).
Meddahi, S. (1993), ‘The Schwarz algorithm for a Raviart–Thomas mixed method’, preprint, to appear.
Meurant, G.A. (1991), ‘Numerical experiments with a domain decomposition method for parabolic problems on parallel computers’, in Fourth Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Kuznetsov, Y.A., Meurant, G.A., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Miller, K. (1965), ‘Numerical analogs of the Schwarz alternating procedure’, Numer. Math. 7, 91–103.
Morchoisne, Y. (1984), ‘Inhomogeneous flow calculations by spectral methods: Mono-domain and multi-domain techniques’, in Spectral Methods for Partial Differential Equations (Voigt, R.G., Gottlieb, D. and Hussaini, M.Y., eds), SIAM-CBMS, 181–208.
Morgenstern, D. (1956), ‘Begründung des alternierenden Verfahrens durch Orthogonalprojektion’, ZAMM 36, 7–8.
Nataf, F. and Rogier, F. (1993), ‘Factorization of the advection-diffusion operator and domain decomposition method’, in Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters (Kaper, H. and Garbey, M., eds), Vol. 384, NATO ASI Series C, 123–133.
Nečas, J. (1967), Les Méthodes Directes en Théorie des Équations Elliptiques, Academia (Prague).
Nepomnyaschikh, S.V. (1984), ‘On the application of the method of bordering for elliptic mixed boundary value problems and on the difference norms of . In Russian. Nepomnyaschikh, S.V. (1986), ‘Domain decomposition and Schwarz methods in a subspace for the approximate solution of elliptic boundary value problems’, Computing Center of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk, USSR.
O'Leary, D.P. and Widlund, O.B. (1979), ‘Capacitance matrix methods for the helmholtz equation on general three-dimensional regions’, Math. Comput. 33, 849–879.
Ong, M. (1989), ‘Hierarchical basis preconditioners for second-order elliptic problems in three dimensions’, Technical Report 89–3, Department of Applied Maths, University of Washington, Seattle.
Oswald, P. (1991), ‘On discrete norm estimates related to multilevel preconditioners in the finite element method’, in Proc. Int. Conf. Theory of Functions, Varna 91, to appear.
Pahl, S. (1993), ‘Domain decomposition for the Stokes problem’, Master's thesis, University of Witwatersrand, Johannesburg.
Pavarino, L.F. (1992), Domain decomposition algorithms for the p-version finite element method for elliptic problems, PhD thesis, Courant Institute of Mathematical Sciences, Department of Mathematics.
Pavarino, L.F. (1993a), ‘Schwarz methods with local refinement for the p-version finite element method’, Technical Report TR93-01, Rice University, Department of Computational and Applied Mathematics, submitted to Numer. Math.
Pavarino, L.F. (1993b), ‘Some Schwarz algorithms for the spectral element method’, in Sixth Conf. on Domain Decomposition Methods for Partial Differential Equations (Quarteroni, A., ed.), American Mathematical Society (Providence, RI), to appear. Technical Report 614, Department of Computer Science, Courant Institute.
Pavarino, L.F. and Widlund, O.B. (1993), ‘Iterative substructuring methods for p-version finite elements in three dimensions’, Technical Report, Courant Institute of Mathematical Sciences, Department of Computer Science, to appear.
Phillips, T.N. (1992), ‘Pseudospectral domain decomposition techniques for the Navier–Stokes equations’, in Fifth Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Chan, T.F., Keyes, D.E., Meurant, G.A., Scroggs, J.S. and Voigt, R.G., eds), SIAM (Philadelphia, PA).
Pothen, A., Simon, H. and Liou, K. (1990), ‘Partitioning sparse matrices with eigenvector of graphs’, SIAM J. Math. Anal. Appl. 11(3), 430–452.
Proskurowski, W. and Vassilevski, P. (1992), ‘Preconditioning nonsymmetric and indefinite capacitance matrix problems in domain imbedding’, Technical Report, UCLA, CAM Report 92-48, University of California, Los Angeles. SIAM J. Sci. Comput., to appear.
Proskurowski, W. and Vassilevski, P. (1994), ‘Preconditioning capacitance matrix problems in domain imbedding’, SIAM J. Sci. Comput., to appear.
Proskurowski, W. and Widlund, O.B. (1976), ‘On the numerical solution of helmholtz's equation by the capacitance matrix method’, Math. Comput. 30, 433–468.
Przemieniecki, J.S. (1963), ‘Matrix structural analysis of substructures’, Amer. Inst. Aero. Astro. J. 1(1), 138–147.
Quarteroni, A. (1989), ‘Domain decomposition algorithms for the Stokes equations’, in Second Int. Conf. on Domain Decomposition Methods (Chan, T., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Quarteroni, A., ed. (1993), Domain Decomposition Methods in Science and Engineering, American Mathematical Society (Providence, RI).
Quarteroni, A. and Valli, A. (1990), ‘Theory and applications of Steklov–Poincaré operators for boundary-value problems: the heterogeneous operator case’, in Proc. 4th Int. Conf. on Domain Decomposition Methods, Moscow (Chan, T., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Resasco, D.C. (1990), ‘Domain decomposition algorithms for elliptic partial differential equations’, PhD thesis, Department of Computer Science, Yale University.
Rusten, T. (1991), ‘Iterative methods for mixed finite element systems’, University of Oslo.
Rusten, T. and Winther, R. (1992), ‘A preconditioned iterative method for saddle point problems’, SIAM J. Matrix Anal. 13(3), 887.
Sarkis, M. (1993), ‘Two-level Schwarz methods for nonconforming finite elements and discontinuous coefficients’, Technical Report 629, Department of Computer Science, Courant Institute of Mathematical Sciences, New York University.
Scapini, F. (1990), ‘The alternating Schwarz method applied to some biharmonic variational inequalities’, Calcolo 27, 57–72.
Scapini, F. (1991), ‘A decomposition method for some biharmonic problems’, J. Comput. Math. 9, 291–300.
Schwarz, H.A. (1890), Gesammelte Mathematische Abhandlungen, Vol. 2, Springer (Berlin) 133–143. First published in Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, Vol. 15, 1870, 272–286.
Scroggs, J.S. (1989), ‘A parallel algorithm for nonlinear convection diffusion equations’, in Third Int. Symp. on Domain Decomposition Methods for Partial Differential Equations, SIAM (Philadelphia, PA).
Simon, H. (1991), ‘Partitioning of unstructured problems for parallel processing’, Comput. Sys. Engrg 2(2/3), 135–148.
Smith, B.F. (1990), ‘Domain decomposition algorithms for the partial differential equations of linear elasticity’, PhD thesis, Courant Institute of Mathematical Sciences. Technical Report 517, Department of Computer Science, Courant Institute.
Smith, B.F. (1991), ‘A domain decomposition algorithm for elliptic problems in three dimensions’, Numer. Math. 60(2), 219–234.
Smith, B.F. (1992), ‘An optimal domain decomposition preconditioner for the finite element solution of linear elasticity problems’, SIAM J. Sci. Comput. 13(1), 364–378.
Smith, B.F. (1993), ‘A parallel implementation of an iterative substructuring algorithm for problems in three dimensions’, SIAM J. Sci. Comput. 14(2), 406–423.
Smith, B.F. and Widlund, O.B. (1990), ‘A domain decomposition algorithm using a hierarchical basis’, SIAM J. Sci. Comput. 11(6), 1212–1220.
Smith, B.F., Bjørstad, P. and Gropp, W.D. (1994), ‘Domain decomposition: algorithms, implementations and a little theory’, to appear.
Sobolev, S.L. (1936), ‘L'algorithme de Schwarz dans la théorie de l'elasticité’, C. R. (Dokl.) Acad. Sci. URSS IV((XIII) 6), 243–246.
Sun, J. and Zou, J. (1991), ‘Ddm preconditioner for 4th order problems by using B-spline finite element method’, in Fourth Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Kuznetsov, Y.A., Meurant, G.A., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Tang, W. P. (1988), ‘Schwarz splitting and template operators’, Department of Computer Science, Stanford University.
Tong, C.H., Chan, T.F. and Kuo, C.C.J. (1991)’, A domain decomposition preconditioner based on a change to a multilevel nodal basis’, SIAM J. Sci. Comput. 12, 1486–1495.
Tsui, W. (1991), ‘Domain decomposition of biharmonic and Navier–Stokes equations’, PhD thesis, Department of Mathematics, University of California, Los Angeles.
Wang, J. (1991), ‘Convergence analysis of Schwarz algorithms and multilevel decomposition iterative methods: Part I’, Proc. IMACS Int. Symp. on Iterative Methods in Linear Algebra (Beauwens, R. and De Groen, P., eds), (Belgium).
Wang, J. (1993), ‘Convergence analysis of schwarz algorithms and multilevel decomposition iterative methods: Part II’, SIAM J. Numer. Anal. 30(4), 953–970.
Wheeler, M.F. and Gonzalez, R. (1984), ‘Mixed finite element methods for petroleum reservoir engineering problems’, in Computing Methods in Applied Sciences and Engineering, VI (Glowinski, R. and Lions, J.L., eds), North-Holland (New York)639–658.
Widlund, O.B. (1987), ‘An extension theorem for finite element spaces with three applications’, in Numerical Techniques in Continuum Mechanics: Notes on Numerical Fluid Mechanics, Vol. 16, (Hackbusch, W. and Witsch, K., eds), Friedr. Vieweg und Sohn (Braunschweig/Wiesbaden) 110–122. Proc. Second GAMM Seminar, Kiel, January, 1986.
Widlund, O.B. (1988), ‘Iterative substructuring methods: Algorithms and theory for elliptic problems in the plane’, in First Int. Symp. on Domain Decomposition Methods for Partial Differential Equations (Glowinski, R., Golub, G.H., Meurant, G.A. and Périaux, J., eds), SIAM (Philadelphia, PA).
Widlund, O.B. (1989a), ‘Iterative solution of elliptic finite element problems on locally refined meshes’, in Finite Element Analysis in Fluids (Chung, T.J. and Karr, G.R., eds), University of Alabama in Huntsville Press (Huntsville, Alabama), 462–467.
Widlund, O.B. (1989b), ‘Optimal iterative refinement methods’, in Second Int. Conf. on Domain Decomposition Methods (Chan, T., Glowinski, R., Périaux, J. and Widlund, O., eds), SIAM (Philadelphia, PA).
Williams, R. (1991), ‘Performance of dynamic load balancing algorithms for unstructured mesh calculations’, Concurrency 3, 457–481.
Xu, J. (1989), ‘Theory of multilevel methods’, PhD thesis, Cornell University.
Xu, J. (1992a), ‘Iterative methods by space decomposition and subspace correction’, SIAM Rev. 34, 581–613.
Xu, J. (1992b), ‘A new class of iterative methods for nonselfadjoint or indefinite problems’, SIAM J. Numer. Anal. 29(2), 303–319.
Xu, J. (1992c), ‘Iterative methods by SPD and small subspace solvers for nonsymmetric or indefinite problems’, Fifth Conf. on Domain Decomposition Methods for Partial Differential Equations (Chan, T.F., Keyes, D.E., Meurant, G.A., Scroggs, J.S. and Voigt, R.G., eds) SIAM (Philadelphia, PA).
Xu, J. and Cai, X.-C. (1992), ‘A preconditioned GMRES method for nonsymmetric or indefinite problems’, Math. Comput. 59, 311–319.
Yserentant, H. (1986), ‘On the multi-level splitting of finite element spaces’, Numer. Math. 49, 379–412.
Zhang, X. (1991), ‘Studies in domain decomposition: Multilevel methods and the biharmonic Dirichlet problem’, PhD thesis, Courant Institute, New York University.
Zhang, X. (1992a), ‘Domain decomposition algorithms for the biharmonic Dirichlet problem’, in Fifth Conf. on Domain Decomposition Methods for Partial Differential Equations (Chan, T.F., Keyes, D.E., Meurant, G.A., Scroggs, J.S. and Voigt, R.G., eds), SIAM (Philadelphia, PA).
Zhang, X. (1992b), ‘Multilevel Schwarz methods’, Num. Math. 63(4), 521–539.
Zhang, X. (1992c), ‘Multilevel Schwarz methods for the biharmonic dirichlet problem’, Technical Report CS-TR2907 (UMIACS-TR-92-60), University of Maryland, Department of Computer Science, submittedto SIAM J. Sci. Comput.