Skip to main content Accessibility help

Increased Na+,K+-ATPase activity in the rat brain after meningitis induction by Streptococcus pneumoniae

  • Tatiana Barichello (a1), Jaqueline S. Generoso (a1), Andreza L. Cipriano (a1), Renata Casagrande (a1), Allan Collodel (a1), Geovana D. Savi (a1), Emilene B. S. Scherer (a2), Janaína Kolling (a2) and Angela T. S. Wyse (a2)...


Barichello T, Generoso JS, Cipriano AL, Casagrande R, Collodel A, Savi GD, Scherer EBS, Kolling J, Wyse ATS. Increase Na+,K+-ATPase activity in the rat brain after meningitis induction by Streptococcus pneumoniae.

Background: Pneumococcal meningitis is the most severe infection of the central nervous system with a mortality rate up to 20% and an adverse neurological result in up to 50% of survivors. A complicated series of interactions among the host immune response and oxidants seems to be responsible for meningitis associated brain dysfunctions. Na+,K+-ATPase is an essential enzyme responsible for generating and maintaining the membrane potential necessary for neural excitability, however, the Na+,K+-ATPase activity is altered in several illness;

Objective: The aim of this study is to evaluate the Na+,K+-ATPase activity in hippocampus and cortex of the rats submitted to pneumococcal meningitis.

Methods: Animals received 10 µl sterile saline as a placebo or an equivalent volume of Streptococcus pneumoniae to the concentration of 5 × 109cfu/ml and were killed at 24, 48, 72 and 96 h after meningitis induction. The brain structures, hippocampus and cortex, were immediately isolated on dry ice and stored at −80°C to analyse Na+,K+-ATPase activity.

Results: In the hippocampus, we verified the increase of Na+,K+-ATPase activity at 48, 72 and 96 h (p < 0.05) and in the cortex at 24 h (p < 0.05) after pneumococcal meningitis induction.

Conclusion: The Na+,K+-ATPase activity is under the control of a diversity of intracellular messengers that are able to modulate the function of the particular isozymes in a precise way. Furthermore, we verified that pneumococcal meningitis increased the Na+,K+-ATPase activity in hippocampus and cortex; this increase can be correlated with a compensatory mechanism in illness pathophysiology.


Corresponding author

Professor Tatiana Barichello, Laboratório de Microbiologia Experimental, PPGCS, UNASAU, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil. Tel: +55 48 3431 2643; Fax: +55 48 3443 4817; E-mail:


Hide All
1.Grandgirard, D, Leib, SL. Strategies to prevent neuronal damage in pediatric bacterial meningitis. Curr Opin Pediatr 2006;18:112118.
2.Meli, DN, Christen, S, Leib, SL, Täauber, MG.Current concepts in the pathogenesis of meningitis caused by Streptococcus pneumoniae. Curr Opin Infect Dis 2002;15:253257.
3.Nau, R, Soto, A, Bruck, W. Apoptosis of neurons in the dentate gyrus in humans suffering from bacterial meningitis. J Neurophatol Exp Neurol 1999;58:265274.
4.Weisfelt, M, Van De Beek, D, Spanjaard, L, Reitsma, JB, De Gans, J. Comunnity-acquired bacterial meningitis in older people. J Am Geriatr Soc 2006;54:15001507.
5.Hoogman, M, Van De Beek, D, Weisfelt, DM, De Gans, J, Schmand, B. Cognitive outcome in adults after bacterial meningitis. J Neurol Neurosurg Psychiatry 2007;78:10921096.
6.Coimbra, RS, Voisin, V, De Saizieu, AB, Lindberg, RL, Wittwer, M, Leppert, D, Leib, SL.Gene expression in cortex and hippocampus during acute pneumococcal meningitis. BMC Biol 2006;4:15.
7.Plata-Salaman, CR.Brain cytokines and disease. Acta Neuropsychiatry 2002;14:262278.
8.Koedel, U, Scheld, WM, Pfister, HW.Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2002;2:721736.
9.Barichello, T, Santos, I, Savi, GD et al. TNF-alpha, IL-1betha, IL-6, and Cinc-1 levels in rat brain after meningitis induced by Streptococcus pneumoniae. J Neuroimmunol 2010;221:4245.
10.Barichello, T, Savi, GD, Silva, GZ et al. Antibiotic therapy prevents, in part, the oxidative stress in the rat brain after meningitis induced by Streptococcus pneumoniae. Neurosci Lett 2010;478:9396.
11.Moe, GW, Marin-Garcia, J, Konig, A, Goldenthal, M, Lu, X, Feng, Q. In vivo TNF-alpha inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. Am J Physiol Heart Circ Physiol 2004;287:H1813H1820.
12.Mariappan, N, Soorappan, RN, Haque, M, Sriramula, S, Francis, J. TNF-induced mitochondrial oxidative stress and cardiac dysfunction: restoration by superoxide dismutase mimetic Tempol. Am J Physiol Heart Circ Physiol 2007;293:H2726H2737.
13.Stanley, WC, Hoppel, CL.Mitochondrial dysfunction in heart failure: potential for therapeutic interventions? Cardiovasc Res 2000;45:805806.
14.Lopez-Campistrous, A, Hao, L, Xiang, W et al. Mitochondrial dysfunction in the hypertensive rat brain: respiratory complexes exhibit assembly defects in hypertension. Hypertension 2008;51:412419.
15.Iannello, S, Milazzo, P, Belfiore, F. Animal and human tissue Na,K-ATPase in obesity and diabetes: a new proposed enzyme regulation. Am J Med Sci 2007;333:19.
16.Mobasheri, A, Avila, J, Cózar-Castellano, I et al. Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 2000;20:5191.
17.Blanco, G, Mercer, Rw. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 1998;275:633650.
18.Wyse, ATS, Streck, EL, Worm, P, Wajner, A, Ritter, F, Netto, CA. Preconditioning prevents the inhibition of Na+,K+-ATPase activity after brain ischemia. Neurochem Res 2000;25:971975.
19.Hattori, N, Kitagawa, K, Higashida, T et al. CI-ATPase and Na+/K(+)-ATPase activities in Alzheimer's disease brains. Neurosci Lett 1998;254:141144.
20.Luca, RD, Fraga, DB, Ghedim, FV et al. Na+, K+-ATPase activity is increased in rats subjected to chronic administration of ketamine. Acta Neuropsychiatry 2011;23:215218.
21.Dodrill, MW, Beezhold, DH, Meighan, T, Kashon, ML, Fedan, JS.Lipopolysaccharide increases Na(+),K(+)-pump, but not ENaC, expression in guinea-pig airway epithelium. Eur J Pharmacol 2011;651:176186.
22.Mccarter, FD, Nierman, SR, James, JH et al. Role of skeletal muscle Na+-K+ ATPase activity in increased lactate production in sub-acute sepsis. Life Sci 2002;70:18751888.
23.Kreydiyyeh, SI, Al-Sadi, R.The signal transduction pathway that mediates the effect of interleukin-1 beta on the Na+-K+-ATPase in LLC-PK1 cells. Pflugers Arch 2004;448:231238.
24.Park, WS, Chang, YS, Lee, M.7-Nitroindazole, but not aminoguanidine, attenuates the acute inflammatory responses and brain injury during the early phase of Escherichia coli meningitis in the newborn piglet. Biol Neonate 2001;80:5359.
25.Sellner, J, Täauber, MG, Leib, SL. Pathogenesis and pathophysiology of bacterial CNS infections. Handb Clin Neurol 2010;96:116.
26.Grandgirard, D, Schürch, C, Cottagnoud, P, Leib, SL. Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis. Antimicrob Agents Chemother 2007;51:21732178.
27.Barichello, T, Pereira, JS, Savi, GD et al. A kinetic study of the cytokine/chemokines levels and disruption of blood-brain barrier in infant rats after pneumococcal meningitis. J Neuroimmunol 2011;33:1217.
28.La Scolea, LJ Jr, Dryja, D. Quantitation of bacteria in cerebrospinal fluid and blood of children with meningitis and its diagnostic significance. J Clin Microbiol 1984;19:187190.
29.Grandgirard, D, Steiner, O, Täauber, MG, Leib, SL. An infant mouse model of brain damage in pneumococcal meningitis. Acta Neuropathol 2007;114:609617.
30.Jones, DH, Matus, AI.Isolation of plasma synaptic membrane from brain by combination flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 1974;356:276287.
31.Wyse, ATS, Wajner, M, Brusque, A, Wannmacher, M. Alanine reverses the inhibitory effect of phenylalanine and its metabolites on Na+, K+-ATPase in synaptic plasma membranes from cerebral cortex of rats. Biochem Soc Trans 1995;23:227.
32.Chan, KM, Delfer, D, Junger, KD.A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 1986;157:375380.
33.Bradford, MM.A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-die-binding. Anal Biochem 1976;72:248254.
34.Nau, R, Bruck, W. Neuronal injury in bacterial meningitis: Mechanisms and implications for therapy. Trends Neurosci 2002;25:3845.
35.Barichello, T, Savi, GD, Simões, LR et al. Evaluation of mitochondrial respiratory chain in the brain of rats after pneumococcal meningitis. Brain Res Bull 2010;82:302307.
36.Ji, L, Chauhan, A, Brown, WT, Chauhan, V. Increased activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in the frontal cortex and cerebellum of autistic individuals. Life Sci 2009;16:788793.
37.Molloy, CA, Morrow, AL, Meinzen-Derr, J et al. Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 2006;172:198205.
38.Ashwood, P, Wakefield, AJ. Immune activation of peripheral blood and mucosal cd3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms. J Neuroimmunol 2006;173:126134.
39.Croonenberghs, J, Bosmans, E, Deboutte, D, Kenis, G, Maes, M. Activation of the inflammatory response system in autism. Neuropsychobiology 2002;45:16.
40.Basu, S, Fenton, MJ. Toll-like receptors: function and roles in lung disease. Am J Physiol Lung Cell Mol Physiol 2004;286:887892.
41.Hotchkiss, RS, Karl, IE.Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 1992;267:15031510.
42.Jones, SB, Westfall, MV, Sayeed, MM.Plasma catecholamines during E. coli bacteremia in conscious rats. Am J Physiol 1988;254:470477.
43.Kling, DE, Cavicchio, AJ, Sollinger, CA, Madoff, LC, Schnitzer, JJ, Kinane, TB.Lactic acid is a potential virulence factor for group B Streptococcus. Microb Pathog 2009;46:4352.
44.Scheiner-Bobis, G.The Na(+), K(+)-ATPase: more than just a sodium pump. Cardiovasc Res 2011;89:68.
45.Brandt, CT.Experimental studies of pneumococcal meningitis. Dan Med Bull 2010;57:122.


Increased Na+,K+-ATPase activity in the rat brain after meningitis induction by Streptococcus pneumoniae

  • Tatiana Barichello (a1), Jaqueline S. Generoso (a1), Andreza L. Cipriano (a1), Renata Casagrande (a1), Allan Collodel (a1), Geovana D. Savi (a1), Emilene B. S. Scherer (a2), Janaína Kolling (a2) and Angela T. S. Wyse (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed