Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T17:32:45.843Z Has data issue: false hasContentIssue false

Effect of chronic administration of ketamine on the mitochondrial respiratory chain activity caused by chronic mild stress

Published online by Cambridge University Press:  24 June 2014

Gislaine T. Rezin
Affiliation:
Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
Cinara L. Gonçalves
Affiliation:
Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
Juliana F. Daufenbach
Affiliation:
Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
Milena Carvalho-Silva
Affiliation:
Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
Lislaine S. Borges
Affiliation:
Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
Julia S. Vieira
Affiliation:
Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
Fernanda V. Hermani
Affiliation:
Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
Clarissa M. Comim
Affiliation:
Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
João Quevedo
Affiliation:
Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
Emilio L. Streck*
Affiliation:
Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
*
Emilio L. Streck, Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil. Tel: +55-48-3431-2539; Fax: +55-48-3431-2644; E-mail: emiliostreck@gmail.com

Abstract

Rezin GT, Gonçalves CL, Daufenbach JF, Carvalho-Silva M, Borges LS, Vieira JS, Hermani FV, Comim CM, Quevedo J, Streck EL. Effect of chronic administration of ketamine on the mitochondrial respiratory chain activity caused by chronic mild stress.

Objective:

Recently, we reported that mitochondrial respiratory chain complexes I, III and IV were inhibited in the cerebral cortex and cerebellum of rats submitted to chronic mild stress (CMS) and that acute ketamine administration reversed this effect. Therefore, we investigated whether the inhibition of these enzymes may be reversed by chronic administration of ketamine.

Methods:

Adult male Wistar rats were submitted to CMS and chronically treated with ketamine. After 40 days of CMS, consumption of sweet food, adrenal gland weight, body weight and enzymatic activity of the complexes were measured.

Results:

We verified that CMS decreased the intake of sweet food, increased the adrenal gland weight and the control group gained weight after 40 days but the stressed group did not; ketamine administration reversed these effects. We also verified that chronic administration of ketamine reversed the inhibition of complexes I, III and IV in cerebral cortex. However, in cerebellum, only complex IV inhibition was reversed. The chronic ketamine administration partially reverses the inhibition caused by CMS.

Conclusion:

We hypothesise that CMS inhibits complexes I, III and IV activities and that chronic administration of ketamine administration partially reverses such an effect. Therefore, it seems reasonable to propose that ketamine administration might be a useful therapy for patients affected by major depression.

Type
Research Article
Copyright
Copyright © 2010 John Wiley & Sons A/S

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kessler, RC, McGonagle, KA, Zhao, Set al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 1994;51:819.CrossRefGoogle ScholarPubMed
Mueller, TI, Leon, AC, Keller, MBet al. Recurrence after recovery from major depressive disorder during 15 years of observational followup. Am J Psychiatry 1999;156:10001006.Google Scholar
Mann, JJ.The medical management of depression. N Engl J Med 2005;353:18191834.CrossRefGoogle Scholar
Skolnick, P, Popik, P, Janowsky, A, Beer, B, Lippa, AS.‘Broad spectrum’ antidepressants: is more better for the treatment of depression?. Life Sci 2003;73:31753179.CrossRefGoogle Scholar
Skolnick, P.Antidepressants for the new millennium. Eur J Pharmacol 1999;375:3140.CrossRefGoogle ScholarPubMed
Nutt, DJ.The neuropharmacology of serotonin and noradrenaline in depression. Int Clin Psychopharmacol 2002;17: S1S12.CrossRefGoogle ScholarPubMed
Javitt, DC.Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 2004;9:984997.CrossRefGoogle ScholarPubMed
Krystal, JH, D’Souza, DC, Petrakis, ILet al. NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders. Harv Rev Psychiatry 1999;7:125143.CrossRefGoogle ScholarPubMed
Danysz, W, Parsons, CG.The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer's disease: preclinical evidence. Int J Geriatr Psychiatry 2003;18:S23S32.CrossRefGoogle ScholarPubMed
Hirota, K, Lambert, DJ.Ketamine: its mechanism(s) of action and unusual clinical uses. Br J Anaesth 1996;77: 441444.CrossRefGoogle ScholarPubMed
Murck, H, Schubert, MI, Schmid, D, Schüssler, P, Steiger, A, Auer, DP.The glutamatergic system and its relation to the clinical effect of therapeutic-sleep deprivation in depression an MR spectroscopy study. J Psychiatr Res 2009;43:175180.CrossRefGoogle ScholarPubMed
Kanarik, M, Matrov, D, Kõiv, K, Eller, M, Tõnissaar, M, Harro, J.Changes in regional long-term oxidative metabolism induced by partial serotonergic denervation and chronic variable stress in rat brain. Neurochem Int 2008;52:432437.CrossRefGoogle ScholarPubMed
Stanyer, L, Jorgensen, W, Hori, O, Clark, JB, Heales, SJ.Inactivation of brain mitochondrial Lon protease by peroxynitrite precedes electron transport chain dysfunction. Neurochem Int 2008;53:95101.CrossRefGoogle ScholarPubMed
Boekema, EJ, Braun, HP.Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem 2007;282:14.CrossRefGoogle ScholarPubMed
Rezin, GT, Amboni, G, Zugno, AI, Quevedo, J, Streck, EL.Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 2009;34:10211029.CrossRefGoogle ScholarPubMed
Rezin, GT, Cardoso, MR, Gonçalves, CLet al. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int 2008;53:395400.CrossRefGoogle Scholar
Gamaro, GD, Manoli, LP, Torres, IL, Silveira, R, Dalmaz, C.Effects stress on feeding behaviour and on monoamine levels in structures. Neurochem Int 2003;42: 107114.CrossRefGoogle ScholarPubMed
Rezin, GT, Gonçalves, CL, Daufenbach, JFet al. Acute administration of ketamine reverses the inhibition of mitochondrial respiratory chain induced by chronic mild stress. Brain Res Bull 2009;79:418421.CrossRefGoogle ScholarPubMed
Ely, DR, Dapper, V, Marasca, Jet al. Effect of restraint stress on feeding behavior of rats. Physiol Behav 1997;61: 395398.CrossRefGoogle ScholarPubMed
Katz, RJ.Animal model of depression: pharmacological sensitivity of a hedonic deficit. Pharmacol Biochem Behav 1981;16:965968.CrossRefGoogle Scholar
Lowry, OH, Rosebough, NG, Farr, AL, Randall, RJ.Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265275.Google ScholarPubMed
Cassina, A, Radi, R.Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 1996;328:309316.CrossRefGoogle ScholarPubMed
Fischer, JC, Ruitenbeek, W, Berden, JAet al. Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 1985;153:2326.CrossRefGoogle ScholarPubMed
Rustin, P, Chretien, D, Bourgeron, Tet al. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 1994;228:3551.CrossRefGoogle ScholarPubMed
Konarska, M, Stewart, RE, McCarty, R.Predictability of chronic intermittent stress: effects on sympathetic-adrenal medullary responses of laboratory rats. Behav Neural Biol 1990;53:231243.CrossRefGoogle ScholarPubMed
Harro, J, Tonissaar, M, Eller, M, Kask, A, Oreland, L.Chronic variable stress and partial 5-HT denervation by parachloroamphetamine treatment in the rat: effects on behavior and monoamine neurochemistry. Brain Res 2001;899:227239.CrossRefGoogle ScholarPubMed
Burns, GA, Ritter, RC.Visceral afferent participation in delayed satiation following NMDA receptor blockade. Physiol Behav 1998;65:361366.CrossRefGoogle ScholarPubMed
Treece, BR, Ritter, RC, Burns, GA.Lesions of the dorsal vagal complex abolish increases in meal size induced by NMDA receptor blockade. Brain Res 2008;72:3743.Google Scholar
O’Connor, TM, O’Halloran, DJ, Shanahan, F.The stress response and the hypothalamic–pituitary–adrenal axis: from molecule to melancholia. Q J Med 2000;93: 323333.CrossRefGoogle ScholarPubMed
Bekris, S, Antoniou, K, Daskas, S, PapadopoulouDaifoti, Z.Behavioural and neurochemical effects induced by chronic mild stress applied to two different rat strains. Behav Brain Res 2005;161:4559.CrossRefGoogle ScholarPubMed
Wilner, P.Chronic mild stress (CMS) revisited: consistency and behavioral–neurobiological concordance in the effects of CMS. Neuropsychobiology 2005;52:90110.CrossRefGoogle Scholar
Gardner, A, Johansson, A, Wibom, Ret al. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 2003;76:5568.CrossRefGoogle ScholarPubMed
Madrigal, JLM, Olivenza, R, Moro, MAet al. Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacol 2001;24:420429.CrossRefGoogle ScholarPubMed
Assis, LC, Rezin, GT, Comim, CMet al. Effect of acute administration of ketamine and imipramine on creatine kinase activity in the brain of rats. Rev Bras Psiquiatr 2009;31:247252.CrossRefGoogle ScholarPubMed
Berman, RM, Cappiello, A, Anand, Aet al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000;47:351354.CrossRefGoogle ScholarPubMed
Zarate, CA Jr, Singh, JB, Carlson, PJet al. A randomised trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006;63:856864.CrossRefGoogle Scholar
Zuo, DY, Wu, YL, Yao, WX, Cao, Y, Wu, CF, Tanaka, M.Effect of MK-801 and ketamine on hydroxyl radical generation in the posterior cingulate and retrosplenial cortex of free-moving mice, as determined by in vivo microdialysis. Pharmacol Biochem Behav 2007;86:17.CrossRefGoogle ScholarPubMed
Saricaoglu, F, Dal, D, Salman, AE, Doral, MN, Kilinc, K, Aypar, U.Ketamine sedation during spinal anesthesia for arthroscopic knee surgery reduced the ischemia-reperfusion injury markers. Anesth Analg 2005;101:904909.CrossRefGoogle ScholarPubMed
Arnaiz, SL, Coronel, MF, Boveris, A.Nitric oxide, superoxide and hydrogen peroxide production in brain mitochondria after haloperidol treatment. Nitric Oxide 1999;3: 235243.CrossRefGoogle ScholarPubMed
Vasconcellos, AP, Nieto, FB, Crema, LMet al. Chronic lithium treatment has antioxidant properties but does not prevent oxidative damage induced by chronic variate stress. Neurochem Res 2006;3:11411151.CrossRefGoogle Scholar
Adam-Vizi, V.Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 2005;7:11401149.CrossRefGoogle ScholarPubMed