Skip to main content Accessibility help
×
Home

Dietary magnesium deficiency alters gut microbiota and leads to depressive-like behaviour

  • Gudrun Winther (a1), Betina M Pyndt Jørgensen (a2), Betina Elfving (a1), Denis Sandris Nielsen (a3), Pernille Kihl (a2), Sten Lund (a4), Dorte Bratbo Sørensen (a2) and Gregers Wegener (a1) (a5)...

Abstract

Objective

Gut microbiota (GM) has previously been associated with alterations in rodent behaviour, and since the GM is affected by the diet, the composition of the diet may be an important factor contributing to behavioural changes. Interestingly, a magnesium restricted diet has been shown to induce anxiety and depressive-like behaviour in humans and rodents, and it could be suggested that magnesium deficiency may mediate the effects through an altered GM.

Methods

The present study therefore fed C57BL/6 mice with a standard diet or a magnesium deficient diet (MgD) for 6 weeks, followed by behavioural testing in the forced swim test (FST) to evaluate depressive-like behaviour. An intraperitoneal glucose tolerance test (GTT) was performed 2 day after the FST to assess metabolic alterations. Neuroinflammatory markers were analysed from hippocampus. GM composition was analysed and correlated to the behaviour and hippocampal markers.

Results

It was found that mice exposed to MgD for 6 weeks were more immobile than control mice in the FST, suggesting an increased depressive-like behaviour. No significant difference was detected in the GTT. GM composition correlated positively with the behaviour of undisturbed C57BL/6 mice, feeding MgD diet altered the microbial composition. The altered GM correlated positively to the hippocampal interleukin-6.

Conclusion

In conclusion, we hypothesise that imbalances of the microbiota–gut–brain axis induced by consuming a MgD diet, contributes to the development of depressive-like behaviour.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary magnesium deficiency alters gut microbiota and leads to depressive-like behaviour
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary magnesium deficiency alters gut microbiota and leads to depressive-like behaviour
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary magnesium deficiency alters gut microbiota and leads to depressive-like behaviour
      Available formats
      ×

Copyright

Corresponding author

Gudrun Winther, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, DK-8240 Risskov, Denmark. Tel: +457 847 1141; E-mail: gudrun.winther@clin.au.dk

References

Hide All
1.Grubbs, RD, Maguire, ME. Magnesium as a regulatory cation: criteria and evaluation. Magnesium 1987;6:113127.
2.Saris, NE, Mervaala, E, Karppanen, H, Khawaja, JA, Lewenstam, A. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 2000;294:126.
3.Wolf, FI, Trapani, V, Cittadini, A. Magnesium and the control of cell proliferation: looking for a needle in a haystack. Magnes Res 2008;21:8391.
4.Barbagallo, M, Dominguez, LJ. Magnesium and aging. Curr Pharm Des 2010;16:832839.
5.Ryan, MF. The role of magnesium in clinical biochemistry: an overview. Ann Clin Biochem 1991;28(Pt 1):1926.
6.Koenig, JH, Ikeda, K. Synaptic vesicles have two distinct recycling pathways. J Cell Biol 1996;135:797808.
7.Zarate, CA Jr., Du, J, Quiroz, Jet al. Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system. Ann N Y Acad Sci 2003;1003:273291.
8.Murck, H. Magnesium and affective disorders. Nutr Neurosci 2002;5:375389.
9.Rasmussen, HH, Mortensen, PB, Jensen, IW. Depression and magnesium deficiency. Int J Psychiatry Med 1989;19:5763.
10.Levine, J, Stein, D, Rapoport, A, Kurtzman, L. High serum and cerebrospinal fluid Ca/Mg ratio in recently hospitalized acutely depressed patients. Neuropsychobiology 1999;39:6370.
11.Cox, IM, Campbell, MJ, Dowson, D. Red blood cell magnesium and chronic fatigue syndrome. Lancet 1991;337:757760.
12.Barragan-Rodriguez, L, Rodriguez-Moran, M, Guerrero-Romero, F. Efficacy and safety of oral magnesium supplementation in the treatment of depression in the elderly with type 2 diabetes: a randomized, equivalent trial. Magnes Res 2008;21:218223.
13.Chaudhary, DP, Sharma, R, Bansal, DD. Implications of magnesium deficiency in type 2 diabetes: a review. Biol Trace Elem Res 2010;134:119129.
14.Celik, N, Andiran., N, Yilmaz, AE. The relationship between serum magnesium levels with childhood obesity and insulin resistance: a review of the literature. J Pediatr Endocrinol Metab 2011;24:675678.
15.Garfinkel, D, Garfinkel, L. Magnesium and regulation of carbohydrate metabolism at the molecular level. Magnesium 1988;7:249261.
16.Suarez, A, Pulido, N, Casla, A, Casanova, B, Arrieta, FJ, Rovira, A. Impaired tyrosine-kinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabetologia 1995;38:12621270.
17.Nadler, JL, Buchanan, T, Natarajan, R, Antonipillai, I, Bergman, R, Rude, R. Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 1993;21:10241029.
18.Paolisso, G, Sgambato, S, Giugliano, Det al. Impaired insulin-induced erythrocyte magnesium accumulation is correlated to impaired insulin-mediated glucose disposal in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1988;31:910915.
19.Weglicki, WB, Phillips, TM, Freedman, AM, Cassidy, MM, Dickens, BF. Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin. Mol Cell Biochem 1992;110:169173.
20.Pachikian, BD, Neyrinck, AM, Deldicque, Let al. Changes in intestinal bifidobacteria levels are associated with the inflammatory response in magnesium-deficient mice. J Nutr 2010;140:509514.
21.Collins, SM, Kassam, Z, Bercik, P. The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Curr Opin Microbiol 2013;16:240245.
22.Bangsgaard Bendtsen, KM, Krych, L, Sorensen, DBet al. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PloS One 2012;7:e46231.
23.Cryan, JF, Dinan, TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012;13:701712.
24.Cryan, JF, O’Mahony, SM. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 2011;23:187192.
25.Johnson, S. The multifaceted and widespread pathology of magnesium deficiency. Med Hypotheses 2001;56:163170.
26.Kantak, KM. Magnesium deficiency alters aggressive behavior and catecholamine function. Behav Neurosci 1988;102:304311.
27.Singewald, N, Sinner, C, Hetzenauer, A, Sartori, SB, Murck, H. Magnesium-deficient diet alters depression- and anxiety-related behavior in mice–influence of desipramine and Hypericum perforatum extract. Neuropharmacology 2004;47:11891197.
28.Porsolt, RD, Le Pichon, M, Jalfre, M. Depression: a new animal model sensitive to antidepressant treatments. Nature 1977;266:730732.
29.Pyndt, JBHJ, Krych, L, Larsen, Cet al. A possible link between food and mood: dietary impact on gut microbiota and behavior in balb/c mice. PloS One 2014;9:115.
30.Elfving, B, Bonefeld, BE, Rosenberg, R, Wegener, G. Differential expression of synaptic vesicle proteins after repeated electroconvulsive seizures in rat frontal cortex and hippocampus. Synapse 2008;62:662670.
31.Andersen, CL, Jensen, JL, Orntoft, TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004;64:52455250.
32.Lundberg, R, Clausen, SK, Pang, Wet al. Gastrointestinal microbiota and local inflammation during oxazolone-induced dermatitis in BALB/cA mice. Comp Med 2012;62:371380.
33.Muyzer, G, Smalla, K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 1998;73:127141.
34.Decollogne, S, Tomas, A, Lecerf, C, Adamowicz, E, Seman, M. NMDA receptor complex blockade by oral administration of magnesium: comparison with MK-801. Pharmacol, Biochem Behav 1997;58:261268.
35.Poleszak, E, Szewczyk, B, K’dzierska, E, Wlaź, P, Pilc, A, Nowak, G. Antidepressant- and anxiolytic-like activity of magnesium in mice. Pharmacol Biochem Behav 2004;78:712.
36.Eby, GA, Eby, KL. Rapid recovery from major depression using magnesium treatment. Med Hypotheses 2006;67:362370.
37.Crunelli, V, Mayer, ML. Mg2+ dependence of membrane resistance increases evoked by NMDA in hippocampal neurones. Brain Res 1984;311:392396.
38.Ennis, M, Aston-Jones, G, Shiekhattar, R. Activation of locus coeruleus neurons by nucleus paragigantocellularis or noxious sensory stimulation is mediated by intracoerulear excitatory amino acid neurotransmission. Brain Res 1992;598:185195.
39.Shiekhattar, R, Aston-Jones, G. NMDA-receptor-mediated sensory responses of brain noradrenergic neurons are suppressed by in vivo concentrations of extracellular magnesium. Synapse 1992;10:103109.
40.Whittle, N, Li, L, Chen, WQet al. Changes in brain protein expression are linked to magnesium restriction-induced depression-like behavior. Amino Acids 2011;40:12311248.
41.Tizabi, Y, Bhatti, BH, Manaye, KF, Das, JR, Akinfiresoye, L. Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female wistar-kyoto rats. Neuroscience 2012;7280.
42.Sartori, SB, Whittle, N, Hetzenauer, A, Singewald, N. Magnesium deficiency induces anxiety and HPA axis dysregulation: modulation by therapeutic drug treatment. Neuropharmacology 2012;62:304312.
43.Poleszak, E, Szewczyk, B, Kedzierska, E, Wlaz, P, Pilc, A, Nowak, G. Antidepressant- and anxiolytic-like activity of magnesium in mice. Pharmacol, Biochem Behav 2004;78:712.
44.Boadle-Biber, MC. Activation of tryptophan hydroxylase from central serotonergic neurons by calcium and depolarization. Biochem Pharmacol 1978;27:10691079.
45.Cao, BJ, Peng, NA. Magnesium valproate attenuates hyperactivity induced by dexamphetamine-chlordiazepoxide mixture in rodents. Eur J Pharmacol 1993;237:177181.
46.Djurhuus, MS, Klitgaard, NA, Beck-Nielsen, H. Magnesium deficiency and development of late diabetic complications. Ugeskr Laeger 1991;153:21082110.
47.Turnbaugh, PJ, Ley, RE, Mahowald, MA, Magrini, V, Mardis, ER, Gordon, JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:10271031.
48.O’Mahony, SM, Marchesi, JR, Scully, Pet al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 2009;65:263267.
49.Collins, S, Verdu, E, Denou, E, Bercik, P. The role of pathogenic microbes and commensal bacteria in irritable bowel syndrome. Dig Dis 2009;27(Suppl. 1):8589.
50.Desbonnet, L, Garrett, L, Clarke, G, Kiely, B, Cryan, JF, Dinan, TG. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 2010;170:11791188.
51.Cryan, JF, Markou, A, Lucki, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 2002;23:238245.
52.Petit-Demouliere, B, Chenu, F, Bourin, M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacol (Berl) 2005;177:245255.
53.Wu, TH, Lin, CH. IL-6 mediated alterations on immobile behavior of rats in the forced swim test via ERK1/2 activation in specific brain regions. Behav Brain Res 2008;193:183191.
54.Baticic, L, Detel, D, Kucic, N, Buljevic, S, Pugel, EP, Varljen, J. Neuroimmunomodulative properties of dipeptidyl peptidase IV/CD26 in a TNBS-induced model of colitis in mice. J Cell Biochem 2011;112:33223333.
55.Kanarik, M, Alttoa, A, Matrov, Det al. Brain responses to chronic social defeat stress: effects on regional oxidative metabolism as a function of a hedonic trait, and gene expression in susceptible and resilient rats. Eur Neuropsychopharmacol 2011;21:92107.
56.Iosifescu, DV, Bolo, NR, Nierenberg, AA, Jensen, JE, Fava, M, Renshaw, PF. Brain bioenergetics and response to triiodothyronine augmentation in major depressive disorder. Biol Psychiatry 2008;63:11271134.
57.Moles, KW, McMullen, JK. Insulin resistance and hypomagnesaemia: case report. Br Med J (Clin Res Ed) 1982;285(6337):262.
58.Kandeel, FR, Balon, E, Scott, S, Nadler, JL. Magnesium deficiency and glucose metabolism in rat adipocytes. Metabolism 1996;45:838843.

Keywords

Dietary magnesium deficiency alters gut microbiota and leads to depressive-like behaviour

  • Gudrun Winther (a1), Betina M Pyndt Jørgensen (a2), Betina Elfving (a1), Denis Sandris Nielsen (a3), Pernille Kihl (a2), Sten Lund (a4), Dorte Bratbo Sørensen (a2) and Gregers Wegener (a1) (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed