Skip to main content Accessibility help
×
Home

Depression is associated with lower circulating endothelial progenitor cells and increased inflammatory markers

  • Lu Yang (a1), Lie-Min Ruan (a1), Hong-Hua Ye (a2), Han-Bin Cui (a2), Qi-Tian Mu (a3), Yan-Ru Lou (a3), Yun-Xin Ji (a1), Wan-Zhen Li (a1), Ding-He Sun (a3) and Xiao-Bei Chen (a3)...

Extract

Yang L, Ruan L-M, Ye H-H, Cui H-B, Mu Q-T, Lou Y-R, Ji Y-X, Li W-Z, Sun D-H, Chen X-B. Depression is associated with lower circulating endothelial progenitor cells and increased inflammatory markers.

Objective: To test the hypothesis that depression status in subjects without cardiovascular diseases (CVD) or diabetes is associated with depletion of circulating endothelial progenitor cells (EPCs) and impaired endothelial function.

Method: Thirty depressive persons with the first episode of depression (case group) diagnosed according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and 30 healthy people (control group) were investigated. The depression status was estimated using Hamilton Rating Scale of Depression from which the criteria of depression are determined to be >21 score. EPCs labeled with CD34-ECD, CD133-phycoerythrin and kinase insert domain receptor (KDR)-fluorescein isothiocyanate antibodies were counted by flow cytometry in the peripheral blood of patients and control subjects. Mononuclear cells that were positive for CD34/KDR, CD133/KDR and CD34/CD133/KDR within the lymphocyte population were characterised as different phenotypes of EPCs.

Results: There were no significant differences in baseline clinical characteristics between patients and healthy individuals (all p > 0.05). However, patients with depression had significantly lower levels of circulating CD34+CD133+KDR+ EPCs (132.20 ± 17.27 vs. 225.93 ± 9.88, p = 0.000) and endothelial colony-forming units (26.40 ± 3.79 vs. 36.60 ± 2.88, p = 0.000) than that of healthy subjects. Furthermore, CD34+CD133+KDR+ EPCs had a negative correlation with tumour necrosis factor-α (Spearman's ρ = 0.433, p = 0.000) and interleukin-6 (Spearman's ρ = 0.441, p = 0.032).

Conclusion: Our result shows that depression was associated with lower levels of circulating EPCs, which may contribute to the development of endothelial dysfunction and atherosclerosis.

Copyright

Corresponding author

Professor Lie-Min Ruan, Department of Psychology, Ningbo First Hospital, Ningbo, Zhejiang 315010, China. Tel: 86 574 87085588; Fax: 86 1354787662; E-mail: liemin_ruan@163.com

References

Hide All
1. Rihmer, Z, Angst, J. Mood disorders: epidemiology. In: Sadock, BJ, Sadock, VA, eds. Kaplan & Sadock's comprehensive textbook of psychiatry, 8th edn. Philadelphia: Lippincott Williams & Wilkins, 2005: 15761582.
2. Heather, SL, James, AB, Michael, AB et al. Depression as a risk factor for coronary artery disease: evidence, mechanisms, and treatment. Psychosom Med 2004;66:305315.
3. Charlton, BG, Leake, A, Wright, C, Griffiths, HW, Ferrier, IN. A combined study of cortisol, ACTH and dexamethasone concentrations in major depression. Multiple time-point sampling. Br J Psychiatry 1987;150:791796.
4. Carmine, P, Lamberto, M, Stefano, M, Grazia, MC. Analysis of potential predictors of depression among coronary heart disease risk factors including heart rate variability, markers of inflammation, and endothelial function. Eur Heart J 2008;29:11101117.
5. Erica, CB, Dominique, LM. Depression, alterations in platelet function, and ischemic heart disease. Psychosom Med 2005;67:S34S36.
6. Empana, JP, Sykes, DH, Luc, G et al. Contributions of depressive mood and circulating inflammatory markers to coronary heart disease in healthy European men: the prospective epidemiological study of myocardial infarction (PRIME). Circulation 2005;111:22992305.
7. Ladwig, KH, Birgitt, MM, Hannelore, L, Angela, D, Wolfgang, K. C-reactive protein, depressed mood, and the prediction of coronary heart disease in initially healthy men: results from the MONICA-KORA Augsburg Cohort Study 1984–98. Eur Heart J 2005;26:25372542.
8. Sanjay, R, Robert, B, Melvyn, R, Elaine, P, Elizabeth, Y, Bertram, P. Abnormal brachial artery flow-mediated vasodilation in young adults with major depression. Am J Cardiol 2001;88:196198.
9. Lett, HS, Blumenthal, JA, Babyak, MA, Sherwood, A, Strauman, T, Robins, C. Depression as a risk factor for coronary artery disease: evidence, mechanisms, and treatment. Psychosom Med 2004;66:305315.
10. Aaron, L, Frank, B, Timothy, OB. Endothelial progenitor cells: diagnostic and therapeutic considerations. Bioessays 2006;28:261270.
11. Gian, PF, Anna, C, Ilenia, B et al. Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke 2006;37:22772282.
12. Jonathan, MH, Gloria, Z, Julian, PJ et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003;348:593600.
13. Imanishi, T, Moriwaki, C, Hano, T, Nishio, I. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens 2005;23:18311837.
14. Nikos, W, Sonja, K, Tobias, S et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005;53:9991007.
15. Loomans, CJM, De Koning, EJP, Staal, FJT et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 2004;53:195299.
16. Chen, JZ, Zhang, FR, Tao, QM, Wang, XX, Zhu, JH, Zhu, JH. Number and activity of endothelial progenitor cells from peripheral blood in patients with hyper- cholesterolaemia. Clin Sci (Lond) 2004;10:273280.
17. Kay, H, Frank, P, Sarah, F, Peter, G. Endothelial progenitor cells in chronic renal insufficiency. Kidney Blood Press Res 2006;29:2431.
18. Johannes, G, Daniel, A, Carl, WS et al. Depletion of endothelial progenitor cells in the peripheral blood of patients with rheumatoid arthritis. Circulation 2005;111:204211.
19. Michaud, SE, Dussault, S, Haddad, P, Groleau, J, Rivard, A. Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis 2006;187:423432.
20. Dirk, H, Walter Kilian, R et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 2002;105:30173024.
21. Jalees, R, Jingling, L, Lakshmi, P et al. Exercise acutely increases circulating endothelial progenitor cells and monocyte-/macrophage-derived angiogenic cells. J Am Coll Cardiol 2004;4:23142318.
22. Kerstin, S, Nikos, W, Jan, B et al. Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation 2003;107:30593065.
23. Kilpatrick, JM, Volanakis, JE. Molecular genetics, structure, and function of C-reactive protein. Immunol Res 1991; 10:4353.
24. Subodh, V, Wang, CH, Li, SH et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 2002;106:913919.
25. Joseph, AV, John, FK, Martin, JG et al. Brachial artery vasodilator function and systemic inflammation in the Framingham Offspring Study. Circulation 2004;110:3604 3609.
26. Florian, HS, Judith, H, Dirk, H et al. Mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation 2005;111:11841191.

Keywords

Depression is associated with lower circulating endothelial progenitor cells and increased inflammatory markers

  • Lu Yang (a1), Lie-Min Ruan (a1), Hong-Hua Ye (a2), Han-Bin Cui (a2), Qi-Tian Mu (a3), Yan-Ru Lou (a3), Yun-Xin Ji (a1), Wan-Zhen Li (a1), Ding-He Sun (a3) and Xiao-Bei Chen (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed