Skip to main content Accessibility help

An fMRI study of face encoding and recognition in first-episode schizophrenia

  • Anantha P. P. Anilkumar (a1) (a2), Veena Kumari (a3), Ravi Mehrotra (a1), Ingrid Aasen (a1), Martina T. Mitterschiffthaler (a4) and Tonmoy Sharma (a5)...



Schizophrenia has been associated with limited abilities to interact effectively in social situations. Face perception and ability to recognise familiar faces are critical for social interaction. Patients with chronic schizophrenia are known to show impaired face recognition. Studying first-episode (FE) patients allows the exclusion of confounding effects of chronicity, medication and institutionalisation in this deficit.


To determine brain (dys)functions during a face encoding and recognition paradigm in FE schizophrenia.


Thirteen antipsychotic-naïve FE schizophrenia patients and 13 age- and sex-matched healthy controls underwent functional magnetic resonance imaging during a face encoding and recognition paradigm. Behavioural responses were recorded on line.


Patients recognised significantly fewer of previously presented faces than the controls (p = 0.008). At the neural level, both groups activated a network of regions including the fusiform area, occipital, temporal and frontal regions. In brain activity, the two groups did not differ in any region during encoding or recognition conditions (p > 0.05, corrected or uncorrected).


Our findings show impaired face recognition without a significant alteration of related brain activity in FE schizophrenia patients. It is possible that neural changes become more strongly evident with progression of the illness, and manifest themselves as behavioural impairments during the early course.


Corresponding author

Dr A.P.P. Anilkumar, MBBS MRC Psych, Room 51, Outpatient Department, Maudsley Hospital, London SE5 8AZ, UK. Tel: 020 7378 6383; Fax: 020 7378 6870; E-mail:


Hide All
1.Silver, H, Shlomo, N, Turner, T, Gur, RC. Perception of happy and sad facial expressions in chronic schizophrenia: evidence for two evaluative systems. Schizophr Res 2002;55:171177.
2.Silver, H, Goodman, C, Bilker, Wet al. Impaired error monitoring contributes to face recognition deficit in schizophrenia patients. Schizophr Res 2006;85:151161.
3.Heimberg, C, Gur, RE, Erwin, RJ, Shtasel, DL, Gur, RC. Facial emotion discrimination: III. Behavioral findings in schizophrenia. Psychiatry Res 1992;42:253265.
4.Gruzelier, JH, Wilson, L, Liddiard, D, Peters, E, Pusavat, L. Cognitive asymmetry patterns in schizophrenia: active and withdrawn syndromes and sex differences as moderators. Schizophr Bull 1999;25:349362.
5.Whittaker, JF, Deakin, JF, Tomenson, B. Face processing in schizophrenia: defining the deficit. Psychol Med 2001;31:499507.
6.Addington, J, Addington, D. Facial affect recognition and information processing in schizophrenia and bipolar disorder. Schizophr Res 1998;32:171181.
7.Onitsuka, T, Shenton, ME, Kasai, Ket al. Fusiform gyrus volume reduction and facial recognition in chronic schizophrenia. Arch Gen Psychiatry 2003;60:349355.
8.Edwards, J, Pattison, PE, Jackson, HJ, Wales, RJ. Facial affect and affective prosody recognition in first-episode schizophrenia. Schizophr Res 2001;48:235253.
9.Marsh, PJ, Williams, LM. ADHD and schizophrenia phenomenology: visual scanpaths to emotional faces as a potential psychophysiological marker? Neurosci Biobehav Rev 2006;30:651665.
10.Calkins, ME, Gur, RC, Ragland, JD, Gur, RE. Face recognition memory deficits and visual object memory performance in patients with schizophrenia and their relatives. Am J Psychiatry 2005;162:19631966.
11.Sharma, T, Kumari, V. Structural and functional brain abnormalities in first episode schizophrenia. In: Sharma, T, Harvey, PD, eds. Early course of schizophrenia. Oxford: Oxford University Press, 2005.
12.Weickert, TW, Goldberg, TE, Gold, JM, Bigelow, LB, Egan, MF, Weinberger, DR. Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arch Gen Psychiatry 2000;57:907913.
13.McClellan, J, Prezbindowski, A, Breiger, D, McCurry, C. Neuropsychological functioning in early onset psychotic disorders. Schizophr Res 2004;68:2126.
14.Bilder, RM, Goldman, RS, Robinson, Det al. Neuropsychology of first-episode schizophrenia: initial characterization and clinical correlates. Am J Psychiatry 2000;157:549559.
15.Silverstein, ML, Zerwic, MJ. Clinical psychopathologic symptoms in neuropsychologically impaired and intact schizophrenics. J Consult Clin Psychol 1985;53:267268.
16.Strauss, BS, Silverstein, ML. Luria-Nebraska measures in neuropsychologically nonimpaired schizophrenics. A comparison with normal subjects. Int J Clin Neuropsychol 1986;8:3538.
17.Bryson, GJ, Silverstein, ML, Nathan, A, Stephen, L. Differential rate of neuropsychological dysfunction in psychiatric disorders: comparison between the Halstead-Reitan and Luria-Nebraska batteries. Percept Mot Skills 1993;76:305306.
18.Palmer, BW, Heaton, RK, Paulsen, JSet al. Is it possible to be schizophrenic yet neuropsychologically normal? Neuropsychology 1997;11:437446.
19.Quintana, J, Wong, T, Ortiz-Portillo, E, Marder, SR, Mazziotta, JC. Right lateral fusiform gyrus dysfunction during facial information processing in schizophrenia. Biol Psychiatry 2003;53:10991112.
20.Conklin, HM, Calkins, ME, Anderson, CW, Dinzeo, TJ, Iacono, WG. Recognition memory for faces in schizophrenia patients and their first-degree relatives. Neuropsychologia 2002;40:23142324.
21.Kanwisher, N, McDermott, J, Chun, MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 1997;17:43024311.
22.Gauthier, I, Logothetis, NK. Is face recognition not so unique after all? Cogn Neuropsychol 2000;17:125142.
23.Malach, R, Levy, I, Hasson, U. The topography of high-order human object areas. Trends Cogn Sci 2002;6:176184.
24.Haxby, JV, Ungerleider, LG, Horwitz, B, Maisog, JM, Rapoport, SI. Face encoding and recognition in the human brain. Proc Natl Acad Sci U S A 1996;93:922927.
25.Cabeza, R, , Nyberg L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 2000;12:147.
26.Henson, RN, Goshen-Gottstein, Y, Ganel, T, Otten, LJ, Quayle, A, Rugg, MD. Electrophysiological and haemodynamic correlates of face perception, recognition and priming. Cereb Cortex 2003;13:793805.
27.Bruce, V, Young, A. Understanding face recognition. Br J Psychol 1986;77:305327.
28.Joseph, JE, Gathers, AD. Natural and manufactured objects activate the fusiform face area. Neuroreport 2002;13:935938.
29.Onitsuka, T, Niznikiewicz, MA, Spencer, KMet al. Functional and structural deficits in brain regions subserving face perception in schizophrenia. Am J Psychiatry 2006;163:455462.
30.Kumari, V, Antonova, E, Geyer, MA, Ffytche, D, Williams, SC, Sharma, T. An fMRI investigation of startle gating deficits in schizophrenia patients treated with typical or atypical antipsychotics. Int J Neuropsychopharmacol 2006;21:115.
31.Kumari, V, Gray, JA, Honey, GDet al. Procedural learning in schizophrenia: a functional magnetic resonance imaging investigation. Schizophr Res 2002;57:97107.
32.Glahn, DC, Ragland, JD, Abramoff, Aet al. Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp 2005;25:6069.
33.Kumari, V, Cooke, M. Use of magnetic resonance imaging in tracking the course and treatment of schizophrenia. Expert Rev Neurother 2006;6:10051016.
34.Tracy, DK, Shergill, SS. Imaging auditory hallucinations in schizophrenia. Acta Neuropsychiatr 2006;18:7178.
35.First, MB, Spitzer, RL, Gibbon, M, Williams, JBW. Structured Clinical Interview for DSM-IV Axis I disorders, Patient Edition (SCID-P), version 2. New York: State Psychiatric Institute, Biometrics Research, 1995.
36.First, MB, Spitzer, RL, Gibbon, M, Williams, JBW. Structured Clinical Interview for DSM-IV Axis I disorders, Non-Patient Edition (SCID-1/NP), version 2. New York: New York State Psychiatric Institute, Biometrics Research, 1996;
37.Kay, SR, Fiszbein, PS, Opler, LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987;13:261276.
38.Barnes, TRE. A rating scale for drug-induced akathisia. Br J Psychiatry 1989;154:672676.
39.Asthari, M, Lancz, T, Bilder, RM, Barr, W, Patel, M. Hippocampus activation in face-encoding task using fMRI. Presented at the Human Brain Mapping, Montreal (abstract 0808), 1998.
40.Ogawa, S, Lee, TM, Kay, AR, Tank, DW. Brain magnetic resonance imaging with contrast dependent blood oxygenation. Proc Nat Acad Sci U S A 1990;87:88688872.
41.Friston, KJ, Williams, S, Howard, R, Frackwiak, RS, Turner, R. Movement related effects in fMRI time series. Mag Reson Med 1996;35:346355.
42.Friston, KJ, Holmes, AP, Worsley, KJ. How many subjects constitute a study? Neuroimage 1999;10:15.
43.Rajah, MN, McIntosh, AR, Grady, CL. Frontotemporal interactions in face encoding and recognition. Cogn Brain Res 1999;8:259269.
44.Bernstein, LJ, Beig, S, Siegenthaler, AL, Grady, CL. The effect of encoding strategy on the neural correlates of memory for faces. Neuropsychologia 2002;40:8698.
45.Hofer, A, Siedentopf, CM, Ischebeck, Aet al. Neural substrates for episodic encoding and recognition of unfamiliar faces. Brain Cogn 2007;63:174181.
46.Katanoda, K, Yoshikawa, K, Sugishita, M. Neural substrates for the recognition of newly learned faces: a functional MRI study. Neuropsychologia 2000;38:16161625.
47.Bonner-Jackson, A, Haut, K, Csernansky, JG, Barch, DM. The influence of encoding strategy on episodic memory and cortical activity in schizophrenia. Biol Psychiatry 2005;58:4755.
48.Phillips, ML, David, AS. Understanding the symptoms of schizophrenia using visual scan paths. Br J Psychiatry 1994;165:673675.
49.Campanella, S, Montedoro, C, Streel, E, Verbanck, P, Rosier, V. Early visual components (P100, N170) are disrupted in chronic schizophrenic patients: an event-related potentials study. Neurophysiol Clin 2006 36:7178.
50.Luck, SJ, Fuller, RL, Braun, EL, Robinson, B, Summerfelt, A, Gold, JM. The speed of visual attention in schizophrenia: electrophysiological and behavioral evidence. Schizophr Res 2006;85:174195.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed