Hostname: page-component-797576ffbb-tx785 Total loading time: 0 Render date: 2023-12-06T17:53:08.574Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Role of T and B lymphocyte cannabinoid type 1 and 2 receptors in major depression and suicidal behaviours

Published online by Cambridge University Press:  08 September 2023

Michael Maes*
Affiliation:
Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria Kyung Hee University, Seoul, Korea
Muanpetch Rachayon
Affiliation:
Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
Ketsupar Jirakran
Affiliation:
Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand Department of Pediatrics, Faculty of Medicine, Maximizing Thai Children’s Developmental Potential Research Unit, Chulalongkorn University, Bangkok, Thailand
Atapol Sughondhabirom
Affiliation:
Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
Abbas F. Almulla
Affiliation:
Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
Pimpayao Sodsai
Affiliation:
Department of Immunology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
*
Corresponding author: M. Maes; Email: dr.michaelmaes@hotmail.com

Abstract

Early flow cytometry studies revealed T cell activation in major depressive disorder (MDD). MDD is characterised by activation of the immune-inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS), including deficits in T regulatory (Treg) cells. This study examines the number of cannabinoid type 1 (CB1) and type 2 (CB2) receptor-bearing T/B lymphocytes in MDD, and the effects of in vitro cannabidiol (CBD) administration on CB1/CB2-bearing immunocytes. Using flow cytometry, we determined the percentage of CD20+CB2+, CD3+CB2+, CD4+CB2+, CD8+CB2+ and FoxP3+CB1+ cells in 19 healthy controls and 29 MDD patients in 5 conditions: baseline, stimulation with anti-CD3/CD28 with or without 0.1 µg/mL, 1.0 µg/mL, or 10.0 µg/mL CBD. CB2+ was significantly higher in CD20+ than CD3+ and CD4+ and CD 8+ cells. Stimulation with anti-CD3/CD8 increases the number of CB2-bearing CD3+, CD4+ and CD8+ cells, as well as CB1-bearing FoxP3+ cells. There was an inverse association between the number of reduced CD4+ CB2+ and IRS profiles, including M1 macrophage, T helper-(Th)-1 and Th-17 phenotypes. MDD is characterised by lowered basal FoxP3+ CB1+% and higher CD20+ CB2+%. 33.2% of the variance in the depression phenome (including severity of depression, anxiety and current suicidal behaviours) is explained by CD20+ CB2+ % (positively) and CD3+ CB2+% (inversely). All five immune cell populations were significantly increased by 10 µg/mL of CBD administration. Reductions in FoxP3+ CB1+% and CD3+ /CD4+ CB2+% contribute to deficits in immune homoeostasis in MDD, while increased CD20+CB2+% may contribute to the pathophysiology of MDD by activating T-independent humoral immunity.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Scandinavian College of Neuropsychopharmacology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agudelo, M, Newton, C, Widen, R, Sherwood, T, Nong, L, Friedman, H and Klein, TW (2008) Cannabinoid receptor 2 (CB2) mediates immunoglobulin class switching from IgM to IgE in cultures of murine-purified B lymphocytes. J Neuroimmune Pharmacol 3(1), 3542. DOI: 10.1007/s11481-007-9088-9.CrossRefGoogle ScholarPubMed
Al-Hakeim, HK, Al-Naqeeb, TH, Almulla, AF and Maes, M (2023) The physio-affective phenome of major depression is strongly associated with biomarkers of astroglial and neuronal projection toxicity which in turn are associated with peripheral inflammation, insulin resistance and lowered calcium. J Affect Disord 331, 300312. DOI: 10.1016/j.jad.2023.03.072.CrossRefGoogle ScholarPubMed
Allman, D, Wilmore, JR and Gaudette, BT (2019) The continuing story of T-cell independent antibodies. Immunological Reviews 288(1), 128135. DOI: 10.1111/imr.12754.CrossRefGoogle ScholarPubMed
An, D, Peigneur, S, Hendrickx, LA and Tytgat, J (2020) Targeting cannabinoid receptors: current status and prospects of natural products. International Journal of Molecular Sciences 21(14), 5064. DOI: 10.3390/ijms21145064.CrossRefGoogle ScholarPubMed
Askenase, PW, Bryniarski, K, Paliwal, V, Redegeld, F, Groot Kormelink, T, Kerfoot, S, Hutchinson, AT, van Loveren, H, Campos, R, Itakura, A, Majewska-Szczepanik, M, Yamamoto, N, Nazimek, K, Szczepanik, M and Ptak, W (2015) A subset of AID-dependent B-1a cells initiates hypersensitivity and pneumococcal pneumonia resistance. Ann N Y Acad Sci 1362(1), 200214. DOI: 10.1111/nyas.12975.CrossRefGoogle ScholarPubMed
Atalay, S, Jarocka-Karpowicz, I and Skrzydlewska, E (2019) Antioxidative and anti-inflammatory properties of cannabidiol. Antioxidants (Basel) 9(1), 21. DOI: 10.3390/antiox9010021.CrossRefGoogle ScholarPubMed
Basu, S, Ray, A and Dittel, BN (2011) Cannabinoid receptor 2 is critical for the homing and retention of marginal zone B lineage cells and for efficient T-independent immune responses. J Immunol 187(11), 57205732. DOI: 10.4049/jimmunol.1102195.CrossRefGoogle Scholar
Basu, S, Ray, A and Dittel, BN (2013) Cannabinoid receptor 2 (CB2) plays a role in the generation of germinal center and memory B cells, but not in the production of antigen-specific IgG and IgM, in response to T-dependent antigens. PLoS One 8(6), e67587. DOI: 10.1371/journal.pone.0067587.CrossRefGoogle Scholar
Baumgarth, N, Waffarn, EE and Nguyen, TT (2015) Natural and induced B-1 cell immunity to infections raises questions of nature versus nurture. Ann N Y Acad Sci 1362(1), 188199. DOI: 10.1111/nyas.12804.CrossRefGoogle ScholarPubMed
Bie, B, Wu, J, Foss, JF and Naguib, M (2018) An overview of the cannabinoid type 2 receptor system and its therapeutic potential. Curr Opin Anaesthesiol 31(4), 407414. DOI: 10.1097/ACO.0000000000000616.CrossRefGoogle ScholarPubMed
Cabral, GA and Marciano-Cabral, F (2005) Cannabinoid receptors in microglia of the central nervous system: immune functional relevance. J Leukoc Biol 78(6), 11921197. DOI: 10.1189/jlb.0405216.CrossRefGoogle ScholarPubMed
Cabral, GA, Raborn, ES, Griffin, L, Dennis, J and Marciano-Cabral, F (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153(2), 240251. DOI: 10.1038/sj.bjp.070758.CrossRefGoogle ScholarPubMed
Cabral, GA and Griffin-Thomas, L (2009) Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation. Expert Rev Mol Med 11, e3. DOI: 10.1017/S1462399409000957.CrossRefGoogle ScholarPubMed
Carayon, P, Marchand, J, Dussossoy, D, Derocq, JM, Jbilo, O, Bord, A, Bouaboula, M, Galiègue, S, Mondière, P, Pénarier, G, Fur, GL, Defrance, T and Casellas, P (1998) Modulation and functional involvement of CB2 peripheral cannabinoid receptors during B-cell differentiation. Blood 92(10), 36053615.CrossRefGoogle ScholarPubMed
Carter, NA, Rosser, EC and Mauri, C (2012) Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. Arthritis Res Ther 14(1), R32. DOI: 10.1186/ar3736.CrossRefGoogle Scholar
Correa, F, Mestre, L, Docagne, F and Guaza, C (2005) Activation of cannabinoid CB2 receptor negatively regulates IL-12p40 production in murine macrophages: role of IL-10 and ERK1/2 kinase signaling. Br J Pharmacol 145(4), 441448. DOI: 10.1038/sj.bjp.0706215.CrossRefGoogle ScholarPubMed
Csóka, B, Németh, ZH, Mukhopadhyay, P, Spolarics, Z, Rajesh, M, Federici, S, Deitch, EA, Bátkai, S, Pacher, P and Haskó, G (2009) CB2 cannabinoid receptors contribute to bacterial invasion and mortality in polymicrobial sepsis. PLoS One 4(7), e6409. DOI: 10.1371/journal.pone.0006409.CrossRefGoogle ScholarPubMed
Ehrhart, J, Obregon, D, Mori, T, Hou, H, Sun, N, Bai, Y, Klein, T, Fernandez, F, Tan, J and Shytle, RD (2005) Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation 2(1), 29. DOI: 10.1186/1742-2094-2-29.CrossRefGoogle ScholarPubMed
Eisenstein, TK and Meissler, JJ (2015) Effects of cannabinoids on T-cell function and resistance to infection. J Neuroimmune Pharmacol 10(2), 204216. DOI: 10.1007/s11481-015-9603-3.CrossRefGoogle ScholarPubMed
Fernández-Ruiz, J, Romero, J, Velasco, G, Tolón, RM, Ramos, JA and Guzmán, M (2007) Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends in Pharmacol Sci 28(1), 3945. DOI: 10.1016/j.tips.2006.11.001.CrossRefGoogle ScholarPubMed
Foley, É.M, Parkinson, JT, Mitchell, RE, Turner, L and Khandaker, GM (2023) Peripheral blood cellular immunophenotype in depression: a systematic review and meta-analysis. Mol Psychiatry 28(3), 10041019. DOI: 10.1038/s41380-022-01919-7.CrossRefGoogle ScholarPubMed
Galiègue, S, Mary, S, Marchand, J, Dussossoy, D, Carrière, D, Carayon, P, Bouaboula, M, Shire, D, Le Fur, G and Casellas, P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232(1), 5461. DOI: 10.1111/j.1432-1033.1995.tb20780.x.CrossRefGoogle ScholarPubMed
García-Gutiérrez, MS, Pérez-Ortiz, JM, Gutiérrez-Adán, A, Manzanares, J (2023) Depression-resistant endophenotype in mice overexpressing cannabinoid CB2 receptors. As. Depressive-resistant behavioural phenotype in mice overexpressing cannabinoid CB2 receptors (core.ac.uk). (accessed 4 April 2023).Google Scholar
Gasparini, A, Callegari, C, Lucca, G, Bellini, A, Caselli, I and Ielmini, M (2022) Inflammatory biomarker and response to antidepressant in major depressive disorder: a systematic review and meta-analysis. Psychopharmacol Bullet 52(1), 3652.Google ScholarPubMed
Gasperi, V, Evangelista, D, Chiurchiù, V, Florenzano, F, Savini, I, Oddi, S, Avigliano, L, Catani, MV and Maccarrone, M (2014) 2-arachidonoylglycerol modulates human endothelial cell/leukocyte interactions by controlling selectin expression through CB1 and CB2 receptors. Int J Biochem Cell Biol 51, 7988. DOI: 10.1016/j.biocel.2014.03.028.CrossRefGoogle ScholarPubMed
Gentili, M, Ronchetti, S, Ricci, E, Di Paola, R, Gugliandolo, E, Cuzzocrea, S, Bereshchenko, O, Migliorati, G and Riccardi, C (2019) Selective CB2 inverse agonist JTE907 drives T cell differentiation towards a treg cell phenotype and ameliorates inflammation in a mouse model of inflammatory bowel disease. Pharmacol Res 141, 2131. DOI: 10.1016/j.phrs.2018.12.005.CrossRefGoogle Scholar
Graham, ES, Angel, CE, Schwarcz, LE, Dunbar, PR and Glass, M (2010) Detailed characterisation of CB2 receptor protein expression in peripheral blood immune cells from healthy human volunteers using flow cytometry. Int J Immunopathol Pharmacol 23(1), 2534. DOI: 10.1177/039463201002300103.CrossRefGoogle ScholarPubMed
Grewal, IS and Flavell, RA (1996) The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev 153(1), 85106. DOI: 10.1111/j.1600-065x.1996.tb00921.x.CrossRefGoogle ScholarPubMed
Grosse, L, Hoogenboezem, T, Ambrée, O, Bellingrath, S, Jörgens, S, de Wit, HJ, Wijkhuijs, AM, Arolt, V and Drexhage, HA (2016) Deficiencies of the T and natural killer cell system in major depressive disorder: T regulatory cell defects are associated with inflammatory monocyte activation. Brain Behav Immun 54, 3844. DOI: 10.1016/j.bbi.2015.12.003.CrossRefGoogle Scholar
Guillot, A, Hamdaoui, N, Bizy, A, Zoltani, K, Souktani, R, Zafrani, ES, Mallat, A, Lotersztajn, S and Lafdil, F (2014) Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver. Hepatology 59(1), 296306. DOI: 10.1002/hep.26598.CrossRefGoogle ScholarPubMed
Hamilton, M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23(1), 5662.CrossRefGoogle ScholarPubMed
Hasbi, A, Madras, BK and George, SR (2023) Endocannabinoid system and exogenous cannabinoids in depression and anxiety: a review. Brain Sci 13(2), 325. DOI: 10.3390/brainsci13020325.CrossRefGoogle ScholarPubMed
Hen-Shoval, D, Amar, S, Shbiro, L, Smoum, R, Haj, CG, Mechoulam, R, Zalsman, G, Weller, A and Shoval, G (2018) Acute oral cannabidiolic acid methyl ester reduces depression-like behavior in two genetic animal models of depression. Behav Brain Res 351, 13. DOI: 10.1016/j.bbr.2018.05.027.CrossRefGoogle ScholarPubMed
Jehle, J, Eich, L, Danisch, M, Bagheri, S, Avraamidou, E, Pfeifer, P, Tiyerili, V, Bindila, L, Lutz, B and Nickenig, G (2021) The endocannabinoid 2-arachidonoylglycerol inhibits endothelial function and repair. Int J Cardiol 323, 243250. DOI: 10.1016/j.ijcard.2020.08.042.CrossRefGoogle ScholarPubMed
Kaplan, BL (2013) The role of CB1 in immune modulation by cannabinoids. Pharmacol Ther 137(3), 365374. DOI: 10.1016/j.pharmthera.2012.12.004.CrossRefGoogle ScholarPubMed
Karsak, M, Gaffal, E, Date, R, Wang-Eckhardt, L, Rehnelt, J, Petrosino, S, Starowicz, K, Steuder, R, Schlicker, E, Cravatt, B, Mechoulam, R, Buettner, R, Werner, S, Di Marzo, V, Tüting, T and Zimmer, A (2007) Attenuation of allergic contact dermatitis through the endocannabinoid system. Science 316(5830), 14941497. DOI: 10.1126/science.1142265.CrossRefGoogle ScholarPubMed
Kerfoot, SM, Szczepanik, M, Tung, JW and Askenase, PW (2008) Identification of initiator B cells, a novel subset of activation-induced deaminase-dependent B-1-like cells that mediate initiation of contact sensitivity. J Immunol 181(3), 17171727. DOI: 10.4049/jimmunol.181.3.1717.CrossRefGoogle ScholarPubMed
Kim, SJ, Lee, H, Lee, G, Oh, SJ, Shin, MK, Shim, I and Bae, H (2012) CD4+CD25+ regulatory T cell depletion modulates anxiety and depression-like behaviors in mice. PLoS One 7(7), e42054. DOI: 10.1371/journal.pone.0042054.CrossRefGoogle ScholarPubMed
Kittirattanapaiboon, P and Khamwongpin, M (2005) The validity of the mini international neuropsychiatric interview (M.I.N.I.)-thai version. J Mental Health Thailand 13, 126136.Google Scholar
Klaus, SJ, Pinchuk, LM, Ochs, HD, Law, CL, Fanslow, WC, Armitage, RJ and Clark, EA (1994) Costimulation through CD28 enhances T cell-dependent B cell activation via CD40-CD40L interaction. J Immunol 152(12), 56435652.CrossRefGoogle ScholarPubMed
Klein, TW, Newton, C and Friedman, H (1998) Cannabinoid receptors and the cytokine network. Adv Exp Med Biol 437, 215222. DOI: 10.1007/978-1-4615-5347-2_24.CrossRefGoogle ScholarPubMed
Klein, TW, Newton, C, Larsen, K, Chou, J, Perkins, I, Lu, L, Nong, L and Friedman, H (2004) Cannabinoid receptors and T helper cells. J Neuroimmunol 147(1-2), 9194. DOI: 10.1016/j.jneuroim.2003.10.019.CrossRefGoogle ScholarPubMed
Köhler, CA, Freitas, TH, Maes, M, de Andrade, NQ, Liu, CS, Fernandes, BS, Stubbs, B, Solmi, M, Veronese, N, Herrmann, N, Raison, CL, Miller, BJ, Lanctôt, KL and Carvalho, AF (2017) Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand 135(5), 373387. DOI: 10.1111/acps.12698.CrossRefGoogle ScholarPubMed
Komorowska-Müller, JA and Schmöle, AC (2020) CB2 receptor in microglia: the guardian of self-control. Int J Mol Sci 22(1), 19. DOI: 10.3390/ijms22010019.CrossRefGoogle ScholarPubMed
Lee, SF, Newton, C, Widen, R, Friedman, H and Klein, TW (2002) Downregulation of cannabinoid receptor 2 (CB2) messenger RNA expression during in vitro stimulation of murine splenocytes with lipopolysaccharide. In Friedman, H and Klein, TW (ed), Neuroimmune Circuits, Drugs of Abuse, and Infectious Diseases. New York, Boston, Dordrecht, London, Moscov: Advances in Experimental Medicine and Biology, Kluwer Academic Publishers. pp. 223228.CrossRefGoogle Scholar
Lombard, C, Nagarkatti, M and Nagarkatti, P (2007) CB2 cannabinoid receptor agonist, JWH-015, triggers apoptosis in immune cells: potential role for CB2-selective ligands as immunosuppressive agents. Clin Immunol 122(3), 259270. DOI: 10.1016/j.clim.2006.11.002.CrossRefGoogle ScholarPubMed
Mac Giollabhui, N, Ng, TH, Ellman, LM and Alloy, LB (2021) The longitudinal associations of inflammatory biomarkers and depression revisited: systematic review, meta-analysis, and meta-regression. Mol Psychiatry 26(7), 33023314. DOI: 10.1038/s41380-020-00867-4.CrossRefGoogle ScholarPubMed
Maes, M (1993) A review on the acute phase response in major depression. Rev Neurosci 4(4), 407416. DOI: 10.1515/revneuro.1993.4.4.407.CrossRefGoogle ScholarPubMed
Maes, M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 19(1), 1138. DOI: 10.1016/0278-5846(94)00101-m.CrossRefGoogle ScholarPubMed
Maes, M and Carvalho, AF (2018) The compensatory immune-regulatory reflex system (CIRS) in depression and bipolar disorder. Mol Neurobiol 55(12), 88858903. DOI: 10.1007/s12035-018-1016-x.CrossRefGoogle ScholarPubMed
Maes, M, Bosmans, E, Suy, E, Vandervorst, C, De Jonckheere, C and Raus, J (1990) Immune disturbances during major depression: upregulated expression of interleukin-2 receptors. Neuropsychobiology 24(3), 115120. DOI: 10.1159/000119472.CrossRefGoogle ScholarPubMed
Maes, M, Bosmans, E, Suy, E, Vandervorst, C, DeJonckheere, C and Raus, J (1991) Depression-related disturbances in mitogen-induced lymphocyte responses and interleukin-1 beta and soluble interleukin-2 receptor production. Acta Psychiatr Scand 84(4), 379386. DOI: 10.1111/j.1600-0447.1991.tb03163.x.CrossRefGoogle ScholarPubMed
Maes, M, Lambrechts, J, Bosmans, E, Jacobs, J, Suy, E, Vandervorst, C, de Jonckheere, C, Minner, B and Raus, J (1992a) Evidence for a systemic immune activation during depression: results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychol Med 22(1), 4553. DOI: 10.1017/s0033291700032712.CrossRefGoogle ScholarPubMed
Maes, M, Stevens, W, DeClerck, L, Bridts, C, Peeters, D, Schotte, C and Cosyns, P (1992b) Immune disorders in depression: higher T helper/T suppressor-cytotoxic cell ratio. Acta Psychiatr Scand 86(6), 423431. DOI: 10.1111/j.1600-0447.1992.tb03292.x.CrossRefGoogle ScholarPubMed
Maes, M, Stevens, WJ, Declerck, LS, Bridts, CH, Peeters, D, Schotte, C and Cosyns, P (1993) Significantly increased expression of T-cell activation markers (interleukin-2 and HLA-DR) in depression: further evidence for an inflammatory process during that illness. Prog Neuropsychopharmacol Biol Psychiatry 17(2), 241255. DOI: 10.1016/0278-5846(93)90045-t.CrossRefGoogle ScholarPubMed
Maes, M, Scharpé, S, Meltzer, HY, Okayli, G, Bosmans, E, D’Hondt, P, Vanden Bossche, BV and Cosyns, P (1994) Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: further evidence for an immune response. Psychiatry Res 54(2), 143160. DOI: 10.1016/0165-1781(94)90003-5.CrossRefGoogle ScholarPubMed
Maes, M, Smith, R and Scharpe, S (1995a) The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology 20(2), 111116. DOI: 10.1016/0306-4530(94)00066-j.CrossRefGoogle ScholarPubMed
Maes, M, Vandoolaeghe, E, Ranjan, R, Bosmans, E, Bergmans, R and Desnyder, R (1995b) Increased serum interleukin-1-receptor-antagonist concentrations in major depression. J Affect Disord 36(1-2), 2936. DOI: 10.1016/0165-0327(95)00049-6.CrossRefGoogle ScholarPubMed
Mikova, O, Yakimova, R, Bosmans, E, Kenis, G and Maes, M (2001) Increased serum tumor necrosis factor alpha concentrations in major depression and multiple sclerosis. Eur Neuropsychopharmacol 11(3), 203208. DOI: 10.1016/s0924-977x(01)00081-5.CrossRefGoogle ScholarPubMed
Maes, M, Mihaylova, I, Kubera, M, Leunis, JC and Geffard, M (2011) IgM-mediated autoimmune responses directed against multiple neoepitopes in depression: new pathways that underpin the inflammatory and neuroprogressive pathophysiology. J Affect Disord 135(1-3), 414418. DOI: 10.1016/j.jad.2011.08.023.CrossRefGoogle ScholarPubMed
Maes, M, Berk, M, Goehler, L, Song, C, Anderson, G, Gałecki, P and Leonard, B (2012) Depression and sickness behavior are janus-faced responses to shared inflammatory pathways. Bmc Medicine 10(1), 66. DOI: 10.1186/1741-7015-10-66.CrossRefGoogle ScholarPubMed
Maes, M, Kubera, M, Leunis, JC, Berk, M, Geffard, M and Bosmans, E (2013) In depression, bacterial translocation may drive inflammatory responses, oxidative and nitrosative stress (O& NS), and autoimmune responses directed against O&NS-damaged neoepitopes. Acta Psychiatr Scand 127(5), 344354. DOI: 10.1111/j.1600-0447.2012.01908.x.CrossRefGoogle ScholarPubMed
Maes, M, Nani, JV, Noto, C, Rizzo, L, Hayashi, MAF and Brietzke, E (2021) Impairments in peripheral blood T effector and T regulatory lymphocytes in bipolar disorder are associated with staging of illness and anti-cytomegalovirus igG levels. Mol Neurobiol 58(1), 229242. DOI: 10.1007/s12035-020-02110-1.CrossRefGoogle Scholar
Maes, M, Rachayon, M, Jirakran, K, Sodsai, P, Klinchanhom, S, Gałecki, P, Sughondhabirom, A and Basta-Kaim, A (2022) The immune profile of major dysmood disorder: proof of concept and mechanism using the precision nomothetic psychiatry approach. Cells 11(7), 1183. DOI: 10.3390/cells11071183.CrossRefGoogle ScholarPubMed
Maresz, K, Pryce, G, Ponomarev, ED, Marsicano, G, Croxford, JL, Shriver, LP, Ledent, C, Cheng, X, Carrier, EJ, Mann, MK, Giovannoni, G, Pertwee, RG, Yamamura, T, Buckley, NE, Hillard, CJ, Lutz, B, Baker, D and Dittel, BN (2007) Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat Med 13(4), 492497. DOI: 10.1038/nm1561.CrossRefGoogle ScholarPubMed
Martin, EL, Strickland, JC, Schlienz, NJ, Munson, J, Jackson, H, Bonn-Miller, MO and Vandrey, R (2021) Antidepressant and anxiolytic effects of medicinal cannabis use in an observational trial. Front Psychiatry 12, 729800. DOI: 10.3389/fpsyt.2021.729800.CrossRefGoogle Scholar
Mohd Ashari, NS, Mohamed Sanusi, SNF, Mohd Yasin, MA, Che Hussin, CM, Wong, KK and Shafei, MN (2019) Major depressive disorder patients on antidepressant treatments display higher number of regulatory T cells. Malays J Pathol 41(2), 169176.Google ScholarPubMed
Morcuende, A, García-Gutiérrez, MS, Tambaro, S, Nieto, E, Manzanares, J and Femenia, T (2022) Immunomodulatory role of CB2 receptors in emotional and cognitive disorders. Front Psychiatry 13, 866052. DOI: 10.3389/fpsyt.2022.866052.CrossRefGoogle ScholarPubMed
Morris, G, Puri, BK, Olive, L, Carvalho, AF, Berk, M and Maes, M (2019) Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 148, 104408. DOI: 10.1016/j.phrs.2019.104408.CrossRefGoogle ScholarPubMed
Muller, C, Morales, P and Reggio, PH (2019) Cannabinoid ligands targeting TRP channels. Front Mol Neurosci 11, 487. DOI: 10.3389/fnmol.2018.00487.CrossRefGoogle ScholarPubMed
Noe, SN, Newton, C, Widen, R, Friedman, H and Klein, TW (2002) Modulation of CB1 mRNA upon activation of murine splenocytes. In Friedman, H and Klein, TW (ed), Neuroimmune circuits, drugs of abuse, and infectious diseases. New York, Boston, Dordrecht, London, Moscov: Advances in Experimental Medicine and Biology, Kluwer Academic Publishers. 215222.CrossRefGoogle Scholar
Nolte, MA, Arens, R, Kraus, M, van Oers, MH, Kraal, G, van Lier, RA and Mebius, RE (2004) B cells are crucial for both development and maintenance of the splenic marginal zone. J Immunol 172(6), 36203627. DOI: 10.4049/jimmunol.172.6.3620.CrossRefGoogle ScholarPubMed
Núñez, E, Benito, C, Pazos, MR, Barbachano, A, Fajardo, O, González, S, Tolón, RM and Romero, J (2004) Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: an immunohistochemical study. Synapse 53(4), 208213. DOI: 10.1002/syn.20050.CrossRefGoogle Scholar
Pertwee, RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 153(2), 199215. DOI: 10.1038/sj.bjp.0707442.CrossRefGoogle ScholarPubMed
Posner, K, Brown, GK, Stanley, B, Brent, DA, Yershova, KV, Oquendo, MA, Currier, GW, Melvin, GA, Greenhill, L, Shen, S and Mann, JJ (2011) The Columbia-suicide severity rating scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. Am J Psychiatry 168(12), 12661277. DOI: 10.1176/appi.ajp.2011.10111704.CrossRefGoogle ScholarPubMed
Rachayon, M, Jirakran, K, Sodsai, P, Klinchanhom, S, Sughondhabirom, A, Plaimas, K, Suratanee, A and Maes, M (2022) In vitro effects of cannabidiol on activated immune-inflammatory pathways in major depressive patients and healthy controls. Pharmaceuticals (Basel) 15(4), 405. DOI: 10.3390/ph15040405.CrossRefGoogle ScholarPubMed
Rahman, M, Sing, S, Golabkesh, Z, Fiskesund, R, Gustafsson, T, Jogestrand, T, Frostegård, AG, Hafström, I, Liu, A and Frostegård, J (2016) IgM antibodies against malondialdehyde and phosphorylcholine are together strong protection markers for atherosclerosis in systemic lupus erythematosus: regulation and underlying mechanisms. Clin Immunol 166-167, 2737. DOI: 10.1016/j.clim.2016.04.007.CrossRefGoogle ScholarPubMed
Raïch, I, Rivas-Santisteban, R, Lillo, A, Lillo, J, Reyes-Resina, I, Nadal, X, Ferreiro-Vera, C, de Medina, VS, Majellaro, M, Sotelo, E, Navarro, G and Franco, R (2021) Similarities and differences upon binding of naturally occurring Δ9-tetrahydrocannabinol-derivatives to cannabinoid CB1 and CB2 receptors. Pharmacol Res 174, 105970. DOI: 10.1016/j.phrs.2021.105970.CrossRefGoogle Scholar
Rayman, N, Lam, KH, Laman, JD, Simons, PJ, Löwenberg, B, Sonneveld, P and Delwel, R (2004) Distinct expression profiles of the peripheral cannabinoid receptor in lymphoid tissues depending on receptor activation status. J Immunol 172(4), 21112117. DOI: 10.4049/jimmunol.172.4.2111.CrossRefGoogle ScholarPubMed
Rieder, SA, Chauhan, A, Singh, U, Nagarkatti, M and Nagarkatti, P (2010) Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology 215(8), 598605. DOI: 10.1016/j.imbio.2009.04.001.CrossRefGoogle ScholarPubMed
Savage, HP and Baumgarth, N (2015) Characteristics of natural antibody-secreting cells. Ann N Y Acad Sci 1362(1), 132142. DOI: 10.1111/nyas.12799.CrossRefGoogle ScholarPubMed
Schatz, AR, Lee, M, Condie, RB, Pulaski, JT and Kaminski, NE (1997) Cannabinoid receptors CB1 and CB2: a characterization of expression and adenylate cyclase modulation within the immune system. Toxicol Appl Pharmacol 142(2), 278287. DOI: 10.1006/taap.1996.8034.CrossRefGoogle ScholarPubMed
Simeonova, D, Stoyanov, D, Leunis, JC, Murdjeva, M and Maes, M (2021) Construction of a nitro-oxidative stress-driven, mechanistic model of mood disorders: a nomothetic network approach. Nitric Oxide 106, 4554. DOI: 10.1016/j.niox.2020.11.001.CrossRefGoogle ScholarPubMed
Saroz, Y, Kho, DT, Glass, M, Graham, ES and Grimsey, NL (2019) Cannabinoid receptor 2 (CB2) signals via G-alpha-s and induces IL-6 and IL-10 cytokine secretion in human primary Leukocytes. ACS Pharmacol Transl Sci 2(6), 414428. DOI: 10.1021/acsptsci.9b00049.CrossRefGoogle ScholarPubMed
Spielberger, CD (1983) State-Trait Anxiety Inventory for Adults (STAI-AD.) [Database record] . APA PsycTests. DOI: 10.1037/t06496-000. (accessed 4 October 2023).Google Scholar
Thermo-Fisher Scientific. T Cell Activation via Anti-CD3 and Anti-CD28 | Thermo Fisher Scientific - TH. As. (accessed 4 April 2023).Google Scholar
Turcotte, C, Blanchet, MR, Laviolette, M and Flamand, N (2016) The CB2 receptor and its role as a regulator of inflammation. Cel Mol Life Sci 73(23), 44494470. DOI: 10.1007/s00018-016-2300-4 2016-12.CrossRefGoogle ScholarPubMed
Weber, GF, Chousterman, BG, Hilgendorf, I, Robbins, CS, Theurl, I, Gerhardt, LM, Iwamoto, Y, Quach, TD, Ali, M, Chen, JW, Rothstein, TL, Nahrendorf, M, Weissleder, R and Swirski, FK (2014) Pleural innate response activator B cells protect against pneumonia via a GM-CSF-igM axis. J Exp Med 211(6), 12431256. DOI: 10.1084/jem.20131471.CrossRefGoogle Scholar
Zasada, M, Rutkowska-Zapała, M, Lenart, M and Kwinta, P (2016) The role of IRA B cells in selected inflammatory processes. Postepy Hig Med Dosw 70, 194199. DOI: 10.5604/17322693.CrossRefGoogle ScholarPubMed
Zhang, Y, Wang, J, Ye, Y, Zou, Y, Chen, W, Wang, Z and Zou, Z (2023) Peripheral cytokine levels across psychiatric disorders: a systematic review and network meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 125, 110740. DOI: 10.1016/j.pnpbp.2023.110740.CrossRefGoogle ScholarPubMed
Ziring, D, Wei, B, Velazquez, P, Schrage, M, Buckley, NE and Braun, J (2006) Formation of B and T cell subsets require the cannabinoid receptor CB2. Immunogenetics 58(9), 714725. DOI: 10.1007/s00251-006-0138-x.CrossRefGoogle Scholar
Zouali, M and Richard, Y (2011) Marginal zone B-cells, a gatekeeper of innate immunity. Front Immunol 2, 63. DOI: 10.3389/fimmu.2011.00063.CrossRefGoogle ScholarPubMed
Supplementary material: File

Maes et al. supplementary material

Maes et al. supplementary material

Download Maes et al. supplementary material(File)
File 5 MB