Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T05:08:34.462Z Has data issue: false hasContentIssue false

Physiological Influences of Music in Perception and Action

Published online by Cambridge University Press:  25 February 2022

Shannon E. Wright
Affiliation:
McGill University, Montréal
Valentin Bégel
Affiliation:
McGill University, Montréal
Caroline Palmer
Affiliation:
McGill University, Montréal

Summary

This Element reviews literature on the physiological influences of music during perception and action. It outlines how acoustic features of music influence physiological responses during passive listening, with an emphasis on comparisons of analytical approaches. It then considers specific behavioural contexts in which physiological responses to music impact perception and performance. First, it describes physiological responses to music that evoke an emotional reaction in listeners. Second, it delineates how music influences physiology during music performance and exercise. Finally, it discusses the role of music perception in pain, focusing on medical procedures and laboratory-induced pain with infants and adults.
Get access
Type
Element
Information
Online ISBN: 9781009043359
Publisher: Cambridge University Press
Print publication: 24 March 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, F. A., Nunes, R. F., Ferreira, S., Krinski, K., Elsangedy, H. M., Buzzachera, C. F., Alves, R. C., & da Silva, S. G. (2015). Effects of musical tempo on physiological, affective, and perceptual variables and performance of self-selected walking pace. Journal of Physical Therapy Science, 27(6), 17091712. http://doi.org/10.1589/jpts.27.1709Google Scholar
Amini, E., Rafiei, P., Zarei, K., Gohari, M., & Hamidi, M. (2013). Effect of lullaby and classical music on physiologic stability of hospitalized preterm infants: A randomized trial. Journal of Neonatal-Perinatal Medicine, 6(4), 295301. http://doi.org/10.3233/NPM-1371313Google Scholar
Arazi, H., Asadi, A., & Purabed, M. (2015). Physiological and psychophysical responses to listening to music during warm-up and circuit-type resistance exercise in strength trained men. Journal of Sports Medicine, 2015, Article 389831. http://doi.org/10.1155/2015/389831CrossRefGoogle ScholarPubMed
Bacon, C. J., Myers, T. R., & Karageorghis, I. (2012). Effect of music-movement synchrony on exercise oxygen consumption. Journal of Sports Medicine and Physical Fitness, 52(4), 359365.Google Scholar
Bannister, S. (2020). A vigilance explanation of musical chills? Effects of loudness and brightness manipulations. Music and Science, 3, 117.Google Scholar
Bannister, S., & Eerola, T. (2018). Suppressing the chills: Effects of musical manipulation on the chills response. Frontiers in Psychology, 9, 116 . http://doi.org/10.3389/fpsyg.2018.02046Google Scholar
Bardy, B. G., Hoffmann, C. P., Moens, B., Leman, M., & Dalla Bella, S. (2015). Sound-induced stabilization of breathing and moving. Annals of the New York Academy of Sciences, 1337, 94100. http://doi.org/10.1111/nyas.12650Google Scholar
Baumgartner, R., Reed, D. K., Tóth, B., Best, V., Majdak, P., Colburn, H. S., & Shinn-Cunningham, B. (2017). Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias. Proceedings of the National Academy of Sciences, 114(36), 97439748.Google Scholar
Beier, E. J., Janata, P., Hulbert, J. C., & Ferreira, F. (2020). Do you chill when I chill? A cross-cultural study of strong emotional responses to music. Psychology of Aesthetics, Creativity, and the Arts, 123 Advance online publication. http://doi.org/10.1037/aca0000310Google Scholar
Belfi, A. M., & Loui, P. (2020). Musical anhedonia and rewards of music listening: Current advances and a proposed model. Annals of the New York Academy of Sciences, 1464, 99114. http://doi.org/10.1111/nyas.14241CrossRefGoogle Scholar
Bernardi, L., Porta, C., & Sleight, P. (2006). Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: The importance of silence. Heart, 92(4), 445452. http://doi.org/10.1136/hrt.2005.064600Google Scholar
Bernardi, N. F., Bellemare-Pepin, A., & Peretz, I. (2017a). Enhancement of pleasure during spontaneous dance. Frontiers in Human Neuroscience, 11, 572. http://doi.org/10.3389/fnhum.2017.00572Google Scholar
Bernardi, N. F., Snow, S., Peretz, I., Orozco Perez, H. D., Sabet-Kassouf, N., & Lehmann, A. (2017b). Cardiorespiratory optimization during improvised singing and toning. Scientific Reports, 7(1), 8113. http://doi.org/10.1038/s41598-017-07171-2Google Scholar
Berntson, G. G., Thomas Bigger Jr, J., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M. Malik, M., Nagaraja, H. N, Porges, S. W., Saul, J. P., Stone, P. H., & Van der Molen, M. W. l. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34(6), 623648. http://doi.org/10.1111/j.1469-8986.1997.tb02140.xGoogle Scholar
Bittman, E. L. (2021). Entrainment is NOT synchronization: An important distinction and its implications. Journal of Biological Rhythms, 36, 196199.Google Scholar
Blasco-Lafarga, C., Garcia-Soriano, C., & Monteagudo, P. (2020). Autonomic modulation improves in response to harder performances while playing wind instruments. Archives of Neuroscience, 7(2), Article e101969. http://doi.org/10.5812/ans.101969Google Scholar
Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 1181811823. http://doi.org/10.1073/pnas.191355898Google Scholar
Bood, R. J., Nijssen, M., van der Kamp, J., & Roerdink, M. (2013). The power of auditory-motor synchronization in sports: Enhancing running performance by coupling cadence with the right beats. PloS One, 8(8), Article e70758. http://doi.org/10.1371/journal.pone.0070758Google Scholar
Bradshaw, D. H., Donaldson, G. W., Jacobson, R. C., Nakamura, Y., & Chapman, C. R. (2011). Individual differences in the effects of music engagement on responses to painful stimulation. Journal of Pain, 12(12), 12621273. http://doi.org/10.1016/j.jpain.2011.08.010Google Scholar
Bradt, J., Dileo, C., Magill, L., & Teague, A. (2016). Music interventions for improving psychological and physical outcomes in cancer patients. The Cochrane Database of Systematic Reviews, 8, Article CD006911. http://doi.org/10.1002/14651858.CD006911.pub3Google Scholar
Bretherton, B., Deuchars, J., & Windsor, W. L. (2019). The effects of controlled tempo manipulations on cardiovascular autonomic function. Music and Science, 2(1), 114. http://doi.org/10.1177/2059204319858281Google Scholar
Brupbacher, G., Harder, J., Faude, O., Zahner, L., & Donath, L. (2014). Music in CrossFit – Influence on performance, physiological, and psychological parameters. Sports, 2(1), 1423. http://doi.org/10.3390/sports2010014Google Scholar
Bullack, A., Büdenbender, N., Roden, I., & Kreutz, G. (2018). Psychophysiological responses to ‘happy’ and ‘sad’ music: A replication study. Music Perception, 35(4), 502517. http://doi.org/10.1525/mp.2018.35.4.502Google Scholar
Caumo, W., Schmidt, A. P., Schneider, C. N., Bergmann, J., Iwamoto, C. W., Adamatti, L. C., Bandeira, D., & Ferreira, M. B. (2001). Risk factors for postoperative anxiety in adults. Anaesthesia, 56(8), 720728. http://doi.org/10.1046/j.1365-2044.2001.01842.xGoogle Scholar
Cavaiuolo, C., Casani, A., Manso, G. D., & Orfeo, L. (2015). Effect of Mozart music on heel prick pain in preterm infants: A pilot randomized controlled trial. Journal of Pediatric and Neonatal Individualized Medicine, 4(1), Article e040109. http://doi.org/10.7363/040109Google Scholar
Cervellin, G., & Lippi, G. (2011). From music-beat to heart-beat: A journey in the complex interactions between music, brain and heart. European Journal of Internal Medicine, 22(4), 371374. http://doi.org/10.1016/j.ejim.2011.02.019Google Scholar
Champagne, F. A., & Curley, J. P. (2009). Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neuroscience and Biobehavioral Reviews, 33(4), 593600. http://doi.org/10.1016/j.neubiorev.2007.10.009Google Scholar
Cheng, T. H., & Tsai, C. G. (2016). Female listeners’ autonomic responses to dramatic shifts between loud and soft music/sound passages: A study of heavy metal songs. Frontiers in Psychology, 7, 182. http://doi.org/10.3389/fpsyg.2016.00182Google Scholar
Chtourou, H., Chaouachi, A., Hammouda, O., Chamari, K., & Souissi, N. (2012). Listening to music affects diurnal variation in muscle power output. International Journal of Sports Medicine, 33(1), 4347. http://doi.org/10.1055/s-0031-1284398Google Scholar
Chuen, L., Sears, D., & McAdams, S. (2016). Psychophysiological responses to auditory change. Psychophysiology, 53(6), 891904. http://doi.org/10.1111/psyp.12633Google Scholar
Coutinho, E., & Cangelosi, A. (2011). Musical emotions: Predicting second-by-second subjective feelings of emotion from low-level psychoacoustic features and physiological measurements. Emotion, 11(4), 921937. http://doi.org/10.1037/a0024700Google Scholar
Cowen, R., Stasiowska, M. K., Laycock, H., & Bantel, C. (2015). Assessing pain objectively: The use of physiological markers. Anaesthesia, 70(7), 828847. http://doi.org/10.1111/anae.13018CrossRefGoogle ScholarPubMed
Critchley, H., & Nagai, Y. (2013). Electrodermal activity (EDA). Encyclopedia of Behavioral Medicine, 78, 666669. http://doi.org/10.1007/978-1-4419-1005-9Google Scholar
Cutrufello, P. T., Benson, B. A., & Landram, M. J. (2020). The effect of music on anaerobic exercise performance and muscular endurance. Journal of Sports Medicine and Physical Fitness, 60(3), 486492. http://doi.org/10.23736/S0022-4707.19.10228-9Google Scholar
da Silva, A. G., Guida, H. L., Antônio, A. M., Marcomini, R. S., Fontes, A. M., de Abreu, L. C. Roque, A. K., Silva, S. B., Raimundo, R. D., Ferreira, C., & Valenti, V. E. (2014a). An exploration of heart rate response to differing music rhythm and tempos. Complementary Therapies in Clinical Practice, 20(2), 130134. http://doi.org/10.1016/j.ctcp.2013.09.004Google Scholar
da Silva, S. A., Guida, H. L., Dos Santos Antonio, A. M., de Abreu, L. C., Monteiro, C. B., Ferreira, C. Ribeiro, V. F., Barnabe, V., Silva, S. B., Foncesca, F. L., Adami, F., Petenusso, M., Raimundo, R. D., & Valenti, V. E. (2014b). Acute auditory stimulation with different styles of music influences cardiac autonomic regulation in men. International Cardiovascular Research Journal, 8(3), 105110.Google Scholar
Damm, L., Varoqui, D., De Cock, V. C., Dalla Bella, S., & Bardy, B. (2020). Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neuroscience and Biobehavioral Reviews, 112, 553584. http://doi.org/10.1016/j.neubiorev.2019.12.024Google Scholar
de Manzano, O., Theorell, T., Harmat, L., & Ullen, F. (2010). The psychophysiology of flow during piano playing. Emotion, 10(3), 301311. http://doi.org/10.1037/a0018432Google Scholar
Dellacherie, D., Roy, M., Hugueville, L., Peretz, I., & Samson, S. (2011). The effect of musical experience on emotional self-reports and psychophysiological responses to dissonance. Psychophysiology, 48(3), 337349. http://doi.org/10.1111/j.1469-8986.2010.01075.xGoogle Scholar
Desai, R., Thaker, R., Patel, J., & Parmar, J. (2015). Effect of music on post-exercise recovery rate in young healthy individuals. International Journal of Research in Medical Sciences, 3(4), 896898. http://doi.org/10.5455/2320-6012.ijrms20150414Google Scholar
Di Cagno, A., Iuliano, E., Fiorilli, G., Aquino, G., Giombini, A., Menotti, F., Tsopani, D., & Calcagno, G. (2016). Effects of rhythmical and extra-rhythmical qualities of music on heart rate during stationary bike activities. Journal of Sports Medicine and Physical Fitness, 56(10), 12271231.Google Scholar
do Amaral, J. A., Guida, H. L., Vanderlei, F. M., Garner, D. M., de Abreu, L. C., & Valenti, V. E. (2015). The effects of musical auditory stimulation of different intensities on geometric indices of heart rate variability. Alternative Therapies in Health and Medicine, 21(5), 1623.Google Scholar
Dyer, B. J., & McKune, A. J. (2013). Effects of music tempo on performance, psychological, and physiological variables during 20 km cycling in well-trained cyclists. Perceptual and Motor Skills: Motor Skills & Ergonomics, 17(2), 484497. http://doi.org/10.2466/29.22.PMS.117x24z8Google Scholar
Ebert, D., Hefter, H., Binkofski, F., & Freund, H. J. (2002). Coordination between breathing and mental grouping of pianistic finger movements. Perceptual and Motor Skills, 95(2), 339353. http://doi.org/10.2466/pms.2002.95.2.339Google Scholar
Eerola, T., & Vuoskoski, J. K. (2013). A review of music and emotion studies: Approaches, emotion models, and stimuli. Music Perception, 30(3), 307340. http://doi.org/10.1525/mp.2012.30.3.307Google Scholar
Eerola, T., Vuoskoski, J. K., Peltola, H. R., Putkinen, V., & Schäfer, K. (2018). An integrative review of the enjoyment of sadness associated with music. Physics of Life Reviews, 25, 100121. http://doi.org/10.1016/j.plrev.2017.11.016Google Scholar
Egermann, H., Fernando, N., Chuen, L., & McAdams, S. (2015). Music induces universal emotion-related psychophysiological responses: Comparing Canadian listeners to Congolese Pygmies. Frontiers in Psychology, 5, 1341. http://doi.org/10.3389/fpsyg.2014.01341CrossRefGoogle ScholarPubMed
Egermann, H., Pearce, M. T., Wiggins, G. A., & McAdams, S. (2013). Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music. Cognitive, Affective and Behavioral Neuroscience, 13(3), 533553. http://doi.org/10.3758/s13415-013-0161-yGoogle Scholar
Egermann, H., Sutherland, M. E., Grewe, O., Nagel, F., Kopiez, R., & Altenmüller, E. (2011). Does music listening in a social context alter experience? A physiological and psychological perspective on emotion. Musicae Scientiae, 15(3), 307323. http://doi.org/10.1177/1029864911399497Google Scholar
Eliakim, M., Bodner, E., Eliakim, A., Nemet, D., & Meckel, Y. (2012). Effect of motivational music on lactate levels during recovery from intense exercise. Journal of Strength and Conditioning Research, 26(1), 8086. http://doi.org/10.1519/JSC.0b013e31821d5f31Google Scholar
Eliakim, M., Bodner, E., Meckel, Y., Nemet, D., & Eliakim, A. (2013). Effect of rhythm on the recovery from intense exercise. Journal of Strength and Conditioning Research, 27(4), 10191024. http://doi.org/10.1519/JSC.0b013e318260b829Google Scholar
Friberg, A., & Sundberg, J. (1999). Does music performance allude to locomotion? A model of final ritardandi derived from measurements of stopping runners. Journal of the Acoustical Society of America, 105, 14691484. http://doi.org/10.1121/1.426687Google Scholar
Fritz, T. H., Hardikar, S., Demoucron, M., Niessen, M., Demey, M., Giot, Ol., Li, Y., Haynes, J.-D., Villringer, A., & Leman, M. (2013). Musical agency reduces perceived exertion during strenuous physical performance. Proceedings of the National Academy of Sciences of the United States of America, 110(44), 1778417789. http://doi.org/10.1073/pnas.1217252110Google Scholar
Garcia, R. L., & Hand, C. J. (2016). Anagelsic effects of self-chosen music type on cold pressor-induced pain: Motivating vs. relaxing music. Psychology of Music, 44(5), 967983. http://doi.org/10.1177/0305735615602144CrossRefGoogle Scholar
Garza-Villarreal, E. A., Pando, V., Vuust, P., & Parsons, C. (2017). Music-induced analgesia in chronic pain conditions: A systematic review and meta-analysis. Pain Physician, 20(7), 597610.CrossRefGoogle ScholarPubMed
Gąsior, J. S., Sacha, J., Jeleń, P. J., Zieliński, J., & Przybylski, J. (2016). Heart rate and respiratory rate influence on heart rate variability repeatability: Effects of the correction for the prevailing heart rate. Frontiers in Physiology, 7, 356. http://doi.org/10.3389/fphys.2016.00356Google Scholar
Goodwin, M. L., Harris, J. E., Hernández, A., & Gladden, L. B. (2007). Blood lactate measurements and analysis during exercise: A guide for clinicians. Journal of Diabetes Science and Technology, 1(4), 558569. http://doi.org/10.1177/193229680700100414CrossRefGoogle ScholarPubMed
Guhn, M., Hamm, A., & Zentner, M. (2007). Physiological and musico-acoustic correlates of the chill response. Music Perception, 24(5), 473483. http://doi.org/10.1525/mp.2007.24.5.473Google Scholar
Harmat, L., Ullén, F., de Manzano, Ö., Olsson, E. von Schéele, B., & Theorell, T. (2011). Heart rate variability during piano playing: A case study of three professional solo pianists playing a self-selected and a difficult prima vista piece. Music and Medicine, 3(2), 102107. http://doi.org/10.1177/1943862110387158Google Scholar
Hartling, L., Shaik, M. S., Tjosvold, L., Leicht, R., Liang, Y., & Kumar, M. (2009). Music for medical indications in the neonatal period: A systematic review of randomised controlled trials. Archives of Disease in Childhood, Fetal and Neonatal Edition, 94(5), F349F354. http://doi.org/10.1136/adc.2008.148411Google Scholar
Hoffmann, C. P., & Bardy, B. G. (2015). Dynamics of the locomotor–respiratory coupling at different frequencies. Experimental Brain Research, 233(5), 15511561. http://doi.org/10.1007/s00221-015-4229-5Google Scholar
Hoffmann, C. P., Torregrosa, G., & Bardy, B. G. (2012). Sound stabilizes locomotor-respiratory coupling and reduces energy cost. PloS One, 7(9), Article e45206. http://doi.org/10.1371/journal.pone.0045206Google Scholar
Hutchinson, J. C., & O’Neil, B. J. (2020). Effects of respite music during recovery between bouts of intense exercise. Sport, Exercise, and Performance Psychology, 9(1), 102114. http://doi.org/10.1037/spy0000161Google Scholar
Jacobs, I. (1986). Blood lactate. Sports Medicine, 3(1), 1025.Google Scholar
Jones, L., Tiller, N. B., & Karageorghis, C. I. (2017). Psychophysiological effects of music on acute recovery from high-intensity interval training. Physiology and Behavior, 170, 106114. http://doi.org/10.1016/j.physbeh.2016.12.017Google Scholar
Juslin, P. N. (2013). From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Physics of Life Reviews, 10(3), 235266. http://doi.org/10.1016/j.plrev.2013.05.008Google Scholar
Juslin, P. N., Barradas, G., & Eerola, T. (2015). From sound to significance: Exploring the mechanisms underlying emotional reactions to music. The American Journal of Psychology, 128(3), 281304. http://doi.org/10.5406/amerjpsyc.128.3.0281Google Scholar
Juslin, P. N., Harmat, L., & Eerola, T. (2014). What makes music emotionally significant? Exploring the underlying mechanisms. Psychology of Music, 42(4), 599623. http://doi.org/10.1177/0305735613484548Google Scholar
Karageorghis, C. I., Bruce, A. C., Pottratz, S. T., Stevens, R. C., Bigliassi, M., & Hamer, M. (2018). Psychological and psychophysiological effects of recuperative music postexercise. Medicine and Science in Sports and Exercise, 50(4), 739746. http://doi.org/10.1249/MSS.0000000000001497CrossRefGoogle ScholarPubMed
Karageorghis, C. I., Jones, L., Priest, D. L., Akers, R. I., Clarke, A., Perry, J. M., Reddick, B. T., Bishop, D. T., & Lim, H. B. (2011). Revisiting the relationship between exercise heart rate and music tempo preference. Research Quarterly for Exercise and Sport, 82(2), 274284. http://doi.org/10.1080/02701367.2011.10599755CrossRefGoogle ScholarPubMed
Karageorghis, C. I., & Priest, D. L. (2012a). Music in the exercise domain: A review and synthesis (Part I). International Review of Sport and Exercise Psychology, 5(1), 4466. http://doi.org/10.1080/1750984X.2011.631026Google Scholar
Karageorghis, C. I., & Priest, D. L. (2012b). Music in the exercise domain: A review and synthesis (Part II). International Review of Sport and Exercise Psychology, 5(1), 6784. http://doi.org/10.1080/1750984X.2011.631027Google Scholar
Koelsch, S., & Jäncke, L. (2015). Music and the heart. European Heart Journal, 36(44), 30433049. http://doi.org/10.1093/eurheartj/ehv430CrossRefGoogle ScholarPubMed
Krabs, R. U., Enk, R., Teich, N., & Koelsch, S. (2015). Autonomic effects of music in health and Crohn’s disease: The impact of isochronicity, emotional valence, and tempo. PloS One, 10(5), Article e0126224. http://doi.org/10.1371/journal.pone.0126224Google Scholar
, F. M., & Gill, B. (2019). Physiology and its impact on the performance of singing. In Welch, G. F., Howard, D. M., & Nix, J. (Eds.), Oxford handbooks online: The Oxford handbook of singing (pp. 120). Oxford University Press. http://doi.org/10.1093/oxfordhb/9780199660773.013.23Google Scholar
Labbé, C., Trost, W., & Grandjean, D. (2020). Affective experiences to chords are modulated by mode, meter, tempo, and subjective entrainment. Psychology of Music, 49(4):116. http://doi.org/10.1177/0305735620906887Google Scholar
Labrague, L. J., & McEnroe-Petitte, D. M. (2016). Influence of music on preoperative anxiety and physiologic parameters in women undergoing gynecologic surgery. Clinical Nursing Research, 25(2), 157173. http://doi.org/10.1177/1054773814544168CrossRefGoogle ScholarPubMed
Landis-Shack, N., Heinz, A. J., & Bonn-Miller, M. O. (2017). Music therapy for posttraumatic stress in adults: A theoretical review. Psychomusicology: Music, Mind, and Brain, 27(4), 334.Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). International affective picture system (IAPS): Technical manual and affective ratings. Center for Research in Psychophysiology.Google Scholar
Lee, S., & Kimmerly, D. S. (2016). Influence of music on maximal self-paced running performance and passive post-exercise recovery rate. Journal of Sports Medicine and Physical Fitness, 56(1–2), 3948.Google Scholar
Lee, W. P., Wu, P. Y., Lee, M. Y., Ho, L. H., & Shih, W. M. (2017). Music listening alleviates anxiety and physiological responses in patients receiving spinal anesthesia. Complementary Therapies in Medicine, 31, 813. http://doi.org/10.1016/j.ctim.2016.12.006Google Scholar
Leow, L. A., Waclawik, K., & Grahn, J. A. (2018). The role of attention and intention in synchronization to music: Effects on gait. Experimental Brain Research, 236(1), 99115. http://doi.org/10.1007/s00221-017-5110-5Google Scholar
Lim, H. B., Karageorghis, C. I., Romer, L. M., & Bishop, D. T. (2014). Psychophysiological effects of synchronous versus asynchronous music during cycling. Medicine and Science in Sports and Exercise, 46(2), 407413. http://doi.org/10.1016/j.ctim.2016.12.006Google Scholar
Lima, L. S., Correia, V. O., Nascimento, T. K., Chaves, B., Silva, J. R., Alves, J. A., Dantas, D., & Ribeiro, M. D. (2017). Is music effective for pain relief in burn victims? International Archives of Medicine, 10(11), 110. http://doi.org/10.3823/2281Google Scholar
Lundqvist, L.-O., Carlsson, F., Hilmersson, P., & Juslin, P. N. (2009). Emotional responses to music: Experience, expression, and physiology. Psychology of Music, 37(1), 6190. http://doi.org/10.1177/0305735607086048Google Scholar
Lynar, E., Cvejic, E., Schubert, E., & Vollmer-Conna, U. (2017). The joy of heartfelt music: An examination of emotional and physiological responses. International Journal of Psychophysiology, 120, 118125. http://doi.org/10.1016/j.ijpsycho.2017.07.012Google Scholar
Martiniano, E. C., Santana, M. D. R., Barros, É. L. D., da Silva, M. D. S., Garner, D. M., De Abreu, L. C., & Valenti, V. E. (2018). Musical auditory stimulus acutely influences heart rate dynamic responses to medication in subjects with well-controlled hypertension. Scientific Reports, 8(1), 19.CrossRefGoogle ScholarPubMed
Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Current Biology, 24, 699704.Google Scholar
Mathias, B., Lidji, P., Honing, H., Palmer, C., & Peretz, I. (2016). Electrical brain responses to beat irregularities in two cases of beat deafness. Frontiers in Neuroscience, 10, 40. http://doi.org/10.3389/fnins.2016.00040Google Scholar
Mendoza, A., Santoyo, F. L., Agulló, A., Fenández-Cañamaque, J. L., & Vivó, C. (2016). The management of pain associated with wound care in severe burn patients in Spain. International Journal of Burns and Trauma, 6(1), 110.Google Scholar
Mikutta, C. A., Schwab, S., Niederhauser, S., Wuermle, O., Strik, W., & Altorfer, A. (2013). Music, perceived arousal, and intensity: Psychophysiological reactions to Chopin’s ‘Tristesse’. Psychophysiology, 50(9), 909919. http://doi.org/10.1111/psyp.12071Google Scholar
Mitchell, M. (2003). Patient anxiety and modern elective surgery: A literature review. Journal of Clinical Nursing, 12(6), 806815. http://doi.org/10.1046/j.1365-2702.2003.00812.xGoogle Scholar
Moens, B., Muller, C., van Noorden, L., Franěk, M., Celie, B., Boone, J. Bourgois, J., & Leman, M. (2014). Encouraging spontaneous synchronisation with D-Jogger, an adaptive music player that aligns movement and music. PloS One, 9(12), Article e114234. http://doi.org/10.1371/journal.pone.0114234Google Scholar
Mollakazemi, M. J., Biswal, D., Elayi, S. C., Thyagarajan, S., & Evans, J. (2019). Synchronization of autonomic and cerebral rhythms during listening to music: Effects of tempo and cognition of songs. Physiological Research, 68(6), 10051019. http://doi.org/10.33549/physiolres.934163Google Scholar
Müller, V., & Lindenberger, U. (2011). Cardiac and respiratory patterns synchronize between persons during choir singing. PloS One, 6(9), Article e24893. http://doi.org/10.1371/journal.pone.0024893Google Scholar
Mütze, H., Kopiez, R., & Wolf, A. (2018). The effect of a rhythmic pulse on the heart rate: Little evidence for rhythmical ‘entrainment’ and ‘synchronization’. Musicae Scientiae, 24(3), 377400. http://doi.org/10.1177/1029864918817805Google Scholar
Nakahara, H., Furuya, S., Masuko, T., Francis, P. R., & Kinoshita, H. (2011). Performing music can induce greater modulation of emotion-related psychophysiological responses than listening to music. International Journal of Psychophysiology, 81, 152158. http://doi.org/10.1016/j.ijpsycho.2011.06.003Google Scholar
Nassrallah, F., Comeau, G., Russell, D., & Cossette, I. (2013). Coordination of breathing and various movement markers during pianists’ performance tasks. Perceptual and Motor Skills, 116(1), 120. http://doi.org/10.2466/22.25.26.PMS.116.1.1-20Google Scholar
Nilsson, U. (2008). The anxiety- and pain-reducing effects of music interventions: A systematic review. AORN Journal, 87(4), 780807. http://doi.org/10.1016/j.aorn.2007.09.013Google Scholar
Nomura, S., Yoshimura, K., & Kurosawa, Y. (2013). A pilot study on the effect of music-heart beat feedback system on human heart activity. Journal of Medical Informatics and Technologies, 22, 251256.Google Scholar
Olsen, K. N., & Stevens, C. J. (2013). Psychophysiological response to acoustic intensity change in a musical chord. Journal of Psychophysiology, 27(1), 1626. http://doi.org/10.1027/0269-8803/a000082CrossRefGoogle Scholar
Olson, R. L., Brush, C. J., O’Sullivan, D. J., & Alderman, B. L. (2015). Psychophysiological and ergogenic effects of music in swimming. Comparative Exercise Physiology, 11(2), 7987. http://doi.org/10.3920/CEP150003Google Scholar
Omigie, D. (2016). Basic, specific, mechanistic? Conceptualizing musical emotions in the brain. Journal of Comparative Neurology, 524(8), 16761686. http://doi.org/10.1002/cne.23854Google Scholar
OʼToole, A., Francis, K., & Pugsley, L. (2017). Does music positively impact preterm infant outcomes? Advances in Neonatal Care, 17(3), 192202. http://doi.org/10.1097/ANC.0000000000000394Google Scholar
Ooishi, Y., Mukai, H., Watanabe, K., Kawato, S., & Kashino, M. (2017). Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music. PloS One, 12(12), Article e0189075. http://doi.org/10.1371/journal.pone.0189075Google Scholar
Palmer, C., Lidji, P., & Peretz, I. (2014). Losing the beat: Deficits in temporal coordination. Philosophical Transactions of the Royal Society B, 369, 1658. http://doi.org/10.1098/rstb.2013.0405Google Scholar
Panskepp, J. (1995). The emotional sources of ‘chills’ induced by music. Music Perception, 13(2), 171207. http://doi.org/10.2307/40285693Google Scholar
Patania, V. M., Padulo, J., Iuliano, E., Ardigò, L. P., Čular, D., Miletić, A., & De Giorgio, A. (2020). The psychophysiological effects of different tempo music on endurance versus high-intensity performances. Frontiers in Psychology, 11, 74, 17. http://doi.org/10.3389/fpsyg.2020.00074CrossRefGoogle ScholarPubMed
Phillips-Silver, J., Toiviainen, P., Gosselin, N., Piché, O., Nozaradan, S., Palmer, C., & Peretz, I. (2011). Born to dance but beat deaf: A new form of congenital amusia. Neuropsychologia, 49, 961969. http://doi.org/10.1016/j.neuropsychologia.2011.02.002Google Scholar
Pölkki, T., & Korhonen, A. (2012). The effectiveness of music on pain among preterm infants in the neonatal intensive care unit: A systematic review. JBI Library of Systematic Reviews, 10(58), 46004609. http://doi.org/10.11124/jbisrir-2012-428Google Scholar
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116143. http://doi.org/10.1016/j.biopsycho.2006.06.009CrossRefGoogle ScholarPubMed
Rasteiro, F. M., Messias, L. H., Scariot, P. P., Cruz, J. P., Cetein, R. L., Gobatto, C. A., & Manchado-Gobatto, F. B. (2020). Effects of preferred music on physiological responses, perceived exertion, and anaerobic threshold determination in an incremental running test on both sexes. PloS One, 15(8), Article e0237310. http://doi.org/10.1371/journal.pone.0237310Google Scholar
Rauscher, F. H., Shaw, G. L., & Ky, K. N. (1993). Music and spatial task performance. Nature, 365(6447), 611. http://doi.org/10.1038/365611a0Google Scholar
Rossi, A., Molinaro, A., Savi, E., Micheletti, S., Galli, J., Chirico, G., & Fazzi, E. (2018). Music reduces pain perception in healthy newborns: A comparison between different music tracks and recoded heartbeat. Early Human Development, 124, 710. http://doi.org/10.1016/j.earlhumdev.2018.07.006Google Scholar
Roy, M., Peretz, I., & Rainville, P. (2008). Emotional valence contributes to music-induced analgesia. Pain, 134(1–2), 140147. http://doi.org/10.1016/j.pain.2007.04.003Google Scholar
Ruiz-Blais, S., Orini, M., & Chew, E. (2020). Heart rate variability synchronizes when non-experts vocalize together. Frontiers in Physiology, 11, 112. http://doi.org/10.3389/fphys.2020.00762Google Scholar
Saarikallio, S. (2011). Music as emotional self-regulation throughout adulthood. Psychology of Music, 39(3), 307327. http://doi.org/10.1177/0305735610374894Google Scholar
Sachs, M. E., Damasio, A., & Habibi, A. (2015). The pleasures of sad music: A systematic review. Frontiers in Human Neuroscience, 9, 404. http://doi.org/10.3389/fnhum.2015.00404Google Scholar
Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 8691. http://doi.org/10.1016/j.tics.2014.12.001Google Scholar
Samuels, E. R., Hou, R. H., Langley, R. W., Szabadi, E., & Bradshaw, C. M. (2007). Modulation of the acoustic startle response by the level of arousal: Comparison of clonidine and modafinil in healthy volunteers. Neuropsychopharmacology, 32(11), 24052421. http://doi.org/10.1038/sj.npp.1301363Google Scholar
Santana, M. D., Martiniano, E. C., Monteiro, L. R., Valenti, V. E., Garner, D. M., Sorpreso, I. C., & de Abreu, L. C. (2017). Musical auditory stimulation influences heart rate autonomic responses to endodontic treatment. Evidence-Based Complementary and Alternative Medicine, 2017, Article 4847869. http://doi.org/10.1155/2017/4847869Google Scholar
Savitha, D., Mallikarjuna, R. N., & Rao, C. (2010). Effect of different musical tempo on post-exercise recovery in young adults. Indian Journal of Physiology and Pharmacology, 54(1), 3236.Google Scholar
Savitha, D., Sejil, T. V., Rao, S., Roshan, C. J., & Avadhany, S. T. (2013). The effect of vocal and instrumental music on cardio respiratory variables, energy expenditure and exertion levels during sub maximal treadmill exercise. Indian Journal of Physiology and Pharmacology, 57(2), 159168.Google Scholar
Scheurich, R., Zamm, A., & Palmer, C. (2018). Tapping into rate flexibility: Musical training facilitates synchronization around spontaneous production rates. Frontiers in Psychology, 9(458), 113.Google Scholar
Shabani, F., Nayeri, N. D., Karimi, R., Zarei, K., & Chehrazi, M. (2016). Effects of music therapy on pain responses induced by blood sampling in premature infants: A randomized cross-over trial. Iranian Journal of Nursing and Midwifery Research, 21(4), 391396. http://doi.org/10.4103/1735-9066.185581Google Scholar
Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Frontiers in Psychology, 5, 1040. http://doi.org/10.3389/fpsyg.2014.01040Google Scholar
Shove, P., & Repp, B. (1995). Musical motion and performance: Theoretical and empirical perspectives. In Rink, J. (Ed.), The practice of performance: Studies in musical interpretation (pp. 5583). Cambridge University Press. http://doi.org/10.1017/CBO9780511552366.004Google Scholar
Sills, D., & Todd, A. (2015). Does music directly affect a person’s heart rate? Journal of Emerging Investigators, 14. www.emerginginvestigators.org/articles/does-music-directly-affect-a-person-s-heart-rateGoogle Scholar
Solberg, R., & Dibben, N. (2019). Peak experiences with electronic dance music: Subjective experiences, physiological responses, and musical characteristics of the break routine. Music Perception, 36(4), 371389. http://doi.org/10.1525/mp.2019.36.4.371Google Scholar
Stork, M. J., Karageorghis, C. I., & Martin Ginis, K. A. (2019). Let’s go: Psychological, psychophysical, and physiological effects of music during sprint interval exercise. Psychology of Sport and Exercise, 45, Article 101547. http://doi.org/10.1016/j.psychsport.2019.101547Google Scholar
Swaminathan, S., & Schellenberg, E. G. (2015). Current emotion research in music psychology. Emotion Review, 7(2), 189197. http://doi.org/10.1177/1754073914558282Google Scholar
Tan, F., Tengah, A., Nee, L. Y., & Fredericks, S. (2014). A study of the effect of relaxing music on heart rate recovery after exercise among healthy students. Complementary Therapies in Clinical Practice, 20(2), 114117. http://doi.org/10.1016/j.ctcp.2014.01.001Google Scholar
Tang, L., Wang, H., Liu, Q., Wang, F., Wang, M., Sun, J., & Zhao, L. (2018). Effect of music intervention on pain responses in premature infants undergoing placement procedures of peripherally inserted central venous catheter: A randomized controlled trial. European Journal of Integrative Medicine, 19, 105109. http://doi.org/10.1016/j.eujim.2018.03.006Google Scholar
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 10431065.Google Scholar
Tekgündüz, K. Ş., Polat, S., Gürol, A., & Apay, S. E. (2019). Oral glucose and listening to lullaby to decrease pain in preterm infants supported with NCPAP: A randomized controlled trial. Pain Management Nursing, 20(1), 5461. http://doi.org/10.1016/j.pmn.2018.04.008Google Scholar
Terry, P. C., Karageorghis, C. I., Curran, M. L., Martin, O. V., & Parsons-Smith, R. L. (2020). Effects of music in exercise and sport: A meta-analytic review. Psychological Bulletin, 146(2), 91117. http://doi.org/10.1037/bul0000216Google Scholar
Terry, P. C., Karageorghis, C. I., Mecozzi Saha, A., & D’Auria, S. (2012). Effects of synchronous music on treadmill running among elite triathletes. Journal of Science and Medicine in Sport, 15(1), 5257. http://doi.org/10.1016/j.jsams.2011.06.003Google Scholar
Thompson, W. F., Schellenberg, E. G., & Husain, G. (2001). Arousal, mood, and the Mozart effect. Psychological Science, 12(3), 248251. http://doi.org/10.1111/1467-9280.00345Google Scholar
Trappe, H. J. (2010). The effects of music on the cardiovascular system and cardiovascular health. Heart, 96(23), 18681871. http://doi.org/10.1136/hrt.2010.209858Google Scholar
Trehub, S. E., Ghazban, N., & Corbeil, M. (2015). Musical affect regulation in infancy. Annals of the New York Academy of Sciences, 1337, 186192. http://doi.org/10.1111/nyas.12622Google Scholar
Trost, W., Labbé, C., & Grandjean, D. (2017). Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia, 96, 96110. http://doi.org/10.1016/j.neuropsychologia.2017.01.004Google Scholar
Tsai, C.-G., & Chen, C.-P. (2015). Musical tension over time: Listeners’ physiological responses to the ‘retransition’ in classical sonata form. Journal of New Music Research, 44(3), 271276. http://doi.org/10.1080/09298215.2015.1043310Google Scholar
Turpin, G., Schaefer, F., & Boucsein, W. (1999). Effects of stimulus intensity, risetime, and duration on autonomic and behavioral responding: Implications for the differentiation of orienting, startle, and defense responses. Psychophysiology, 36(4), 453463.Google Scholar
Valenti, V. E., Guida, H. L., Frizzo, A. C., Cardoso, A. C., Vanderlei, L. C., & Abreu, L. C. (2012). Auditory stimulation and cardiac autonomic regulation. Clinics, 67(8), 955958. http://doi.org/10.6061/clinics/2012(08)16Google Scholar
van der Zwaag, M. D., Westerink, J. H. D. M., & van den Broek, E. L. (2011). Emotional and psychophysiological responses to tempo, mode, and percussiveness. Musicae Scientiae, 15(2), 250269. http://doi.org/10.1177/1029864911403364Google Scholar
Van Dyck, E., & Leman, M. (2016). Ergogenic effect of music during running performance. Annals of Sports Medicine and Research, 3(6), 10821085.Google Scholar
Van Dyck, E., Six, J., Soyer, E., Denys, M., Bardijn, I., & Leman, M. (2017). Adopting a music-to-heart rate alignment strategy to measure the impact of music and its tempo on human heart rate. Musicae Scientiae, 21(4), 390404. http://doi.org/10.1177/1029864917700706Google Scholar
Vickhoff, B., Malmgren, H., Aström, R. Nyberg, G., Ekström, , Engwall, M., Snygg, J., Nilsson, M., & Jörnsten, R. (2013). Music structure determines heart rate variability of singers. Frontiers in Psychology, 4, 116. http://doi.org/10.3389/fpsyg.2013.00334Google Scholar
Vieillard, S., Roy, M., & Peretz, I. (2012). Expressiveness in musical emotions. Psychological Research, 76, 641653. http://doi.org/10.1007/s00426-011-0361-4Google Scholar
Vuilleumier, P., & Trost, W. (2015). Music and emotions: From enchantment to entrainment. Annals of the New York Academy of Sciences, 1337, 212222. http://doi.org/10.1111/nyas.12676Google Scholar
Wang, Y., Wei, J., Guan, X., Zhang, Y., Zhang, Y., Zhang, N. Mao, M., Du, W., Ren, Y., Shen, H., & Liu, P. (2020). Music intervention in pain relief of cardiovascular patients in cardiac procedures: A systematic review and meta-analysis. Pain Medicine, 21(11), 30553065. Advance online publication. http://doi.org/10.1093/pm/pnaa148CrossRefGoogle ScholarPubMed
Watanabe, K., Ooishi, Y., & Kashino, M. (2015). Sympathetic tone induced by high acoustic tempo requires fast respiration. PloS One, 10(8), Article e0135589. http://doi.org/10.1371/journal.pone.0135589Google Scholar
Watanabe, K., Ooishi, Y., & Kashino, M. (2017). Heart rate responses induced by acoustic tempo and its interaction with basal heart rate. Scientific Reports, 7, Article 43856. http://doi.org/10.1038/srep43856CrossRefGoogle ScholarPubMed
Waterhouse, J., Hudson, P., & Edwards, B. (2010). Effects of music tempo upon submaximal cycling performance. Scandinavian Journal of Medicine and Science in Sports, 20(4), 662669. http://doi.org/10.1111/j.1600-0838.2009.00948.xGoogle Scholar
Welch, G.F., Howard, D.M., & Nix, J. (Eds.), Oxford handbooks online: The Oxford handbook of singing. Oxford University Press. http://doi.org/10.1093/oxfordhb/9780199660773.013.23Google Scholar
White, E. L., & Rickard, N. S. (2016). Emotion response and regulation to ‘happy’ and ‘sad’ music stimuli: Partial synchronization of subjective and physiological responses. Musicae Scientiae, 20(1), 1125. http://doi.org/10.1177/1029864915608911Google Scholar
Wolfe, J., Garnier, M., & Smith, J. (2009). Vocal tract resonances in speech, singing, and playing musical instruments. HFSP, 3(1): 623.Google Scholar
Wright, S. E., & Palmer, C. (2020). Physiological and behavioral factors in musicians’ performance tempo. Frontiers in Human Neuroscience, 14, 115. http://doi.org/10.3389/fnhum.2020.00311Google Scholar
Wu, P. Y., Huang, M. L., Lee, W. P., Wang, C., & Shih, W. M. (2017). Effects of music listening on anxiety and physiological responses in patients undergoing awake craniotomy. Complementary Therapies in Medicine, 32, 5660. http://doi.org/10.1016/j.ctim.2017.03.007Google Scholar
Zatorre, R. J. (2015). Musical pleasure and reward: Mechanisms and dysfunction. Annals of the New York Academy of Sciences, 1337, 202211. http://doi.org/10.1111/nyas.12677Google Scholar
Zatorre, R. J., & Salimpoor, V. N. (2013). From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences of the United States of America, 110(Suppl. 2), 1043010437. http://doi.org/10.1073/pnas.1301228110Google Scholar
Zekveld, A. A., Koelewijn, T., & Kramer, S. E. (2018). The pupil dilation response to auditory stimuli: Current state of knowledge. Trends in Hearing, 22, 125. http://doi.org/10.1177/2331216518777174Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Physiological Influences of Music in Perception and Action
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Physiological Influences of Music in Perception and Action
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Physiological Influences of Music in Perception and Action
Available formats
×