Skip to main content Accessibility help
×
Home
The Breadth of Visual Attention

The Breadth of Visual Attention

Humans can focus their attention narrowly (e.g., to read this text) or broadly (e.g., to determine which way a large crowd of people are moving). This Element comprehensively considers attentional breadth. Section 1 introduces the concept of attentional breadth, while Section 2 considers measures of attentional breadth. In particular, this section provides a critical discussion of the types of psychometric evidence which should be sought to establish the validity of measures of attentional breadth and reviews the available evidence through this lens. Section 3 considers the visual task performance consequences of attentional breadth, including prescribing several key methodological criteria that studies that manipulate attentional breadth need to meet, as well as a discussion of relevant theories and avenues for future theoretical development. Section 4 discusses the utility of the exogenous–endogenous distinction from covert shifts of attention for understanding the performance consequences of attentional breadth. Finally, Section 5 provides concluding remarks.

  • Export citation
  • Recommend to librarian
  • Buy the Element
  • Copyright

  • COPYRIGHT: © Stephanie C. Goodhew 2020

References

Hide all
Ahmed, L., & de Fockert, J. W. (2012). Focusing on Attention: The Effects of Working Memory Capacity and Load on Selective Attention. Plos One, 7(8), e43101. doi:10.1371/journal.pone.0043101 CrossRef | Google Scholar
  • PubMed
  • Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–43. doi:10.1016/j.tics.2012.06.010 CrossRef | Google Scholar
  • PubMed
  • Badcock, J. C., Whitworth, F. A., Badcock, D. R., & Lovegrove, W. J. (1990). Low-frequency filtering and the processing of local-global stimuli. Perception, 19(5), 617–29. doi:10.1068/p190617 CrossRef | Google Scholar
  • PubMed
  • Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63 (1), 1–29. doi:10.1146/annurev-psych-120710-100422 CrossRef | Google Scholar
  • PubMed
  • Baddeley, A., & Hitch, G. J. (1974). Working memory. In Bower, G. A. ed., The Psychology of Learning and Motivation, 8, 47–89: New York: Academic Press. Google Scholar
    Ball, K., Beard, B. L., Roenker, D. L., Miller, R. L., & Griggs, D. S. (1988). Age and visual search: expanding the useful field of view. Journal of the Optical Society of America, A, Optics, Image Science & Vision, 5(12), 2210–19. CrossRef | Google Scholar
  • PubMed
  • Ball, K., Owsley, C., Sloane, M. E., Roenker, D. L., & Bruni, J. R. (1993). Visual attention problems as a predictor of vehicle crashes in older drivers. Investigative Opthalmology & Visual Sciences, 34(11), 3110–23. Google Scholar
  • PubMed
  • Balz, G. W., & Hock, H. S. (1997). The effect of attentional spread on spatial resolution. Vision Research, 37(11), 1499–510. doi:10.1016/S0042-6989(96)00296-9 CrossRef | Google Scholar
  • PubMed
  • Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmidt, A. M., Dale, A. M.,… Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences, 103(2), 449–54. doi:10.1073/pnas.0507062103 CrossRef | Google Scholar
  • PubMed
  • Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133(1), 1–24. doi:10.1037/0033-2909.133.1.1 CrossRef | Google Scholar
  • PubMed
  • Baruch, O., & Yeshurun, Y. (2014). Attentional attraction of receptive fields can explain spatial and temporal effects of attention. Visual Cognition, 22(5), 704–36. doi:10.1080/13506285.2014.911235 CrossRef | Google Scholar
    Basso, M. R., Schefft, B. K., Ris, M. D., & Dember, W. N. (1996). Mood and global-local visual processing. Journal of the International Neuropsychological Society, 2(3), 249–55. doi:10.1017/S1355617700001193 CrossRef | Google Scholar
  • PubMed
  • Baumann, N., & Kuhl, J. (2005). Positive Affect and Flexibility: Overcoming the Precedence of Global over Local Processing of Visual Information. Motivation and Emotion, 29(2), 123–34. doi:10.1007/s11031-005-7957-1 CrossRef | Google Scholar
    Behrmann, M., Avidan, G., Leonard, G. L., Kimchi, R., Luna, B., Humphreys, K., & Minshew, N. (2006). Configural processing in autism and its relationship to face processing. Neuropsychologia, 44(1), 110–29. doi:10.1016/j.neuropsychologia.2005.04.002 CrossRef | Google Scholar
  • PubMed
  • Belopolsky, A. V., Zwaan, L., Theeuwes, J., & Kramer, A. F. (2007). The size of an attentional window modulates attentional capture by color singletons. Psychonomic Bulletin & Review, 14(5), 934–8. doi:10.3758/bf03194124 CrossRef | Google Scholar
  • PubMed
  • Bennett, P. J., & Pratt, J. (2001). The spatial distribution of inhibition of return. Psychological Science, 12(1), 76–80. doi:10.1111/1467-9280.00313 CrossRef | Google Scholar
  • PubMed
  • Benso, F., Turatto, B., & Gastone, G. (1998). The time course of attentional focusing. European Journal of Cognitive Psychology, 10(4), 373–88. doi:10.1080/713752283 Google Scholar
    Biggs, A. T., & Gibson, B. S. (2018). Opening the window: Size of the attentional window dominates perceptual load and familiarity in visual selection. Journal of Experimental Psychology: Human Perception & Performance, 44(11), 1780–98. doi:10.1037/xhp0000565 Google Scholar
  • PubMed
  • Bleckley, M. K., Durso, F. T., Crutchfield, J. M., Engle, R. W., & Khanna, M. M. (2003). Individual differences in working memory capacity predict visual attention allocation. Psychonomic Bulletin & Review, 10(4), 884–9. doi:10.3758/BF03196548 CrossRef | Google Scholar
  • PubMed
  • Bocanegra, B. R., & Zeelenberg, R. (2011). Emotion-induced trade-offs in spatiotemporal vision. Journal of Experimental Psychology: General, 140(2), 272–82. doi:10.1037/a0023188 Google Scholar
  • PubMed
  • Brown, T. A., Chorpita, B. F., Korotitsch, W., & Barlow, D. H. (1997). Psychometric properties of the Depression Anxiety Stress Scales (DASS) in clinical samples. Behav Res Ther, 35(1), 79–89. doi:10.1016/S0005-7967(96)00068-X CrossRef | Google Scholar
    Bruyer, R., & Brysbaert, M. (2011). Combining speed and accuracy in cognitive psychology: Is the inverse efficiency score (IES) a better dependent variable than the mean reaction time (RT) and the percentage of errors (PE)? Psychologica Belgica, 51(1), 5–13. doi:10.5334/pb-51-1-5 CrossRef | Google Scholar
    Buetti, S., Lleras, A., & Moore, C. M. (2014). The flanker effect does not reflect the processing of “task-irrelevant” stimuli: evidence from inattentional blindness. Psychonomic Bulletin & Review, 21(5), 1231–37. doi:10.3758/s13423-014-0602-9 CrossRef | Google Scholar
    Bulakowski, P. F., Bressler, D. W., & Whitney, D. (2007). Shared attentional resources for global and local motion processing. Journal of Vision, 7(10), 1–10 doi:10.1167/7.10.10 Google Scholar
    Burr, D. C., Concetta Morrone, M., & Vaina, L. M. (1998). Large receptive fields for optic flow detection in humans. Vision Research, 38(12), 1731–43. doi:10.1016/S0042-6989(97)00346-5 CrossRef | Google Scholar
  • PubMed
  • Bush, W. S., & Vecera, S. P. (2014). Differential effect of one versus two hands on visual processing. Cognition, 133(1), 232–7. doi:10.1016/j.cognition.2014.06.014 CrossRef | Google Scholar
  • PubMed
  • Calcott, R. D., & Berkman, E. T. (2014). Attentional Flexibility During Approach and Avoidance Motivational States: The Role of Context in Shifts of Attentional Breadth. Journal of Experimental Psychology: General, 143(3), 1393–408. doi:10.1037/a0035060 Google Scholar
  • PubMed
  • Caparos, S., & Linnell, K. J. (2010). The spatial focus of attention is controlled at perceptual and cognitive levels. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1080–107. doi:10.1037/a0020367 Google Scholar
  • PubMed
  • Caparos, S., Linnell, K. J., Bremner, A. J., de Fockert, J. W., & Davidoff, J. (2013). Do local and global perceptual biases tell us anything about local and global selective attention? Psychological Science, 24(2), 206–12. doi:10.1177/0956797612452569 CrossRef | Google Scholar
  • PubMed
  • Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–525. doi:10.1016/j.visres.2011.04.012 CrossRef | Google Scholar
  • PubMed
  • Castiello, U., & Umiltà, C. (1990). Size of the attentional focus and efficiency of processing. Acta Psychologica, 73(3), 195–209. doi:10.1016/0001-6918(90)90022-8 CrossRef | Google Scholar
    Chica, A. B., Bartolomeo, P., & Lupianez, J. (2013). Two cognitive and neural systems for endogenous and exogenous spatial attention. Behavioural Brain Research, 237, 107–23. doi:10.1016/j.bbr.2012.09.027 CrossRef | Google Scholar
  • PubMed
  • Chica, A. B., & Christie, J. (2009). Spatial attention does improve temporal discrimination. Attention, Perception, & Psychophysics, 71(2), 273–80. doi:10.3758/APP.71.2.273 CrossRef | Google Scholar
  • PubMed
  • Chong, S. C., & Treisman, A. (2005). Attentional spread in the statistical processing of visual displays. Perception & Psychophysics, 67(1), 1–13. doi:10.3758/bf03195009 CrossRef | Google Scholar
  • PubMed
  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–15. doi:10.1038/nrn755 CrossRef | Google Scholar
    Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569–99. doi:10.1146/annurev-neuro-061010-113731 CrossRef | Google Scholar
  • PubMed
  • Coren, S., Ward, L. M., & Enns, J. T. (2004). Sensation and Perception: New York: J. Wiley & Sons. Google Scholar
    Cosman, J. D., Lees, M. N., Lee, J. D., Rizzo, M., & Vecera, S. P. (2012). Impaired attentional disengagement in older adults with useful field of view decline. The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 67(4), 405–12. doi:10.1093/geronb/gbr116 CrossRef | Google Scholar
  • PubMed
  • Cox, J. A., Christensen, B. K., & Goodhew, S. C. (2018). Temporal dynamics of anxiety-related attentional bias: Is affective context a missing piece of the puzzle? Cognition & emotion, 32(6), 1329–38. doi:10.1080/02699931.2017.1386619 CrossRef | Google Scholar
  • PubMed
  • Cutzu, F., & Tsotsos, J. K. (2003). The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item. Vision Research, 43(2), 205–19. doi:10.1016/s0042-6989(02)00491-1 CrossRef | Google Scholar
  • PubMed
  • Dale, G., & Arnell, K. M. (2013). Investigating the stability of and relationships among global/local processing measures. Attention, Perception & Psychophysics, 75(3), 394–406. doi:10.3758/s13414-012-0416-7 CrossRef | Google Scholar
  • PubMed
  • Dale, G., & Arnell, K. M. (2015). Multiple measures of dispositional global/local bias predict attentional blink magnitude. Psychological Research, 79(4), 534–47. doi:10.1007/s00426-014-0591-3 CrossRef | Google Scholar
  • PubMed
  • Delchau, H. L., Christensen, B. K., O’Kearney, R., & Goodhew, S. C. (2019). What is top-down about seeing enemies? Social anxiety and attention to threat. Attention, Perception, & Psychophysics. doi:10.3758/s13414-019-01920-3 CrossRef | Google Scholar
    Dell’Acqua, R., Dux, P. E., Wyble, B., Doro, M., Sessa, P., Meconi, F., & Jolicoeur, P. (2015). The attentional blink impairs detection and delays encoding of visual information: evidence from human electrophysiology. Journal of Cognitive Neuroscience, 27(4), 720–35. doi:10.1162/jocn_a_00752 Google Scholar
  • PubMed
  • Denison, R. N., Vu, A. T., Yacoub, E., Feinberg, D. A., & Silver, M. A. (2014). Functional mapping of the magnocellular and parvocellular subdivisions of human LGN. NeuroImage, 2, 358–69. doi:10.1016/j.neuroimage.2014.07.019 Google Scholar
    Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in the lateral geniculate nucleus of the macaque. Journal of Physiology, 357, 219–40. CrossRef | Google Scholar
  • PubMed
  • Downing, C. J. (1988). Expectancy and visual-spatial attention: Effects on perceptual quality. Journal of Experimental Psychology: Human Perception and Performance, 14(2), 188–202. doi:10.1037/0096-1523.14.2.188 Google Scholar
  • PubMed
  • Edwards, J. D., Fausto, B. A., Tetlow, A. M., Corona, R. T., & Valdes, E. G. (2018). Systematic review and meta-analyses of useful field of view cognitive training. Neuroscience & Biobehavioral Reviews, 84, 72–91. doi:10.1016/j.neubiorev.2017.11.004 CrossRef | Google Scholar
  • PubMed
  • Enns, J. T., & Akhtar, N. (1989). A developmental study of filtering in visual attention. Child Dev, 60(5), 1188–99. doi:10.2307/1130792 CrossRef | Google Scholar
  • PubMed
  • Enns, J. T., & Girgus, J. S. (1985). Developmental changes in selective and integrative visual attention. Journal of Experimental Child Psychology, 40(2), 319–37. doi:10.1016/0022-0965(85)90093-1 CrossRef | Google Scholar
  • PubMed
  • Enns, J. T., & Kingstone, A. (1995). Access to Global and Local Properties in Visual Search for Compound Stimuli. Psychological Science, 6(5), 283–91. doi:10.1111/j.1467-9280.1995.tb00512.x CrossRef | Google Scholar
    Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–9. doi:10.3758/bf03203267 CrossRef | Google Scholar
    Eriksen, C. W., & St. James, J. D. (1986). Visual attention within and around the field of focal attention: A zoom lens model. Perception & Psychophysics, 40(4), 225–40. doi:10.3758/BF03211502 CrossRef | Google Scholar
  • PubMed
  • Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26(2), 471–9. doi:10.1016/j.neuroimage.2005.02.004 CrossRef | Google Scholar
  • PubMed
  • Fang, L., Hoorelbeke, K., Bruyneel, L., Notebaert, L., MacLeod, C., De Raedt, R., & Koster, E. H. (2017). Can training change attentional breadth? Failure to find transfer effects. Psychological Research, 82(3), 520–34. doi:10.1007/s00426-017-0845-y Google Scholar
  • PubMed
  • Fang, L., Sanchez-Lopez, A., & Koster, E. H. W. (2018). Attentional scope, rumination, and processing of emotional information: An eye-tracking study. Emotion, 19 (7), 1257–67. doi:10.1037/emo0000516 Google Scholar
    Fenske, M. J., & Eastwood, J. D. (2003). Modulation of focused attention by faces expressing emotion: evidence from flanker tasks. Emotion, 3(4), 327–43. doi:10.1037/1528-3542.3.4.327 CrossRef | Google Scholar
  • PubMed
  • Ferrera, V. P., Nealey, T. A., & Maunsell, J. R. (1992). Mixed parvocellular and magnocellular geniculate signals in visual area V4. Nature, 358, 756–8. doi:10.1038/358756a0 CrossRef | Google Scholar
  • PubMed
  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18(4), 1030–44. doi:10.1037/0096-1523.18.4.1030 Google Scholar
  • PubMed
  • Fredrickson, B. L., & Branigan, C. (2005). Positive emotions broaden the scope of attention and thought-action repertoires. Cognition and Emotion, 19(3), 313–32. doi:10.1080/02699930441000238 CrossRef | Google Scholar
  • PubMed
  • Gable, P. A., & Harmon-Jones, E. (2008). Approach-motivated positive affect reduces breadth of attention. Psychological Science, 19(5), 476–82. doi:10.1111/j.1467-9280.2008.02112.x CrossRef | Google Scholar
  • PubMed
  • Gable, P. A., & Harmon-Jones, E. (2010a). The blues broaden, but the nasty narrows: attentional consequences of negative affects low and high in motivational intensity. Psychological Science, 21(2), 211–15. doi:10.1177/0956797609359622 CrossRef | Google Scholar
  • PubMed
  • Gable, P. A., & Harmon-Jones, E. (2010b). The effect of low versus high approach-motivated positive affect on memory for peripherally versus centrally presented information. Emotion, 10(4), 599–603. doi:10.1037/a0018426 CrossRef | Google Scholar
  • PubMed
  • Gable, P. A., & Harmon-Jones, E. (2011). Attentional states influence early neural responses associated with motivational processes: local vs. global attentional scope and N1 amplitude to appetitive stimuli. Biological Psychology, 87(2), 303–5. doi:10.1016/j.biopsycho.2011.02.007 CrossRef | Google Scholar
  • PubMed
  • Gable, P. A., & Harmon-Jones, E. (2012). Reducing attentional capture of emotion by broadening attention: increased global attention reduces early electrophysiological responses to negative stimuli. Biological Psychology, 90(2), 150–3. doi:10.1016/j.biopsycho.2012.02.006 CrossRef | Google Scholar
  • PubMed
  • Gao, Z., Flevaris, A. V., Robertson, L. C., & Bentin, S. (2011). Priming global and local processing of composite faces: revisiting the processing-bias effect on face perception. Attention, Perception & Psychophysics, 73(5), 1477–86. doi:10.3758/s13414-011-0109-7 CrossRef | Google Scholar
  • PubMed
  • Gasper, K., & Clore, G. L. (2002). Attending to the big picture: mood and global versus local processing of visual information. Psychological Science, 13(1), 34–40. doi:10.1111/1467-9280.00406 CrossRef | Google Scholar
  • PubMed
  • Gerlach, C., & Starrfelt, R. (2018). Global precedence effects account for individual differences in both face and object recognition performance. Psychonomic Bulletin & Review, 25(4), 1365–72. doi:10.3758/s13423-018-1458-1 CrossRef | Google Scholar
  • PubMed
  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–5. doi:10.1016/0166-2236(92)90344-8 CrossRef | Google Scholar
  • PubMed
  • Goodhew, S. C. (2017). What have we learned from two decades of object-substitution masking? Time to update: Object individuation prevails over substitution. Journal of Experimental Psychology: Human Perception and Performance, 43(6), 1249–62. doi:10.1037/xhp0000395 Google Scholar
  • PubMed
  • Goodhew, S. C., & Clarke, R. (2016). Contributions of parvocellular and magnocellular pathways to visual perception near the hands are not fixed, but can be dynamically altered. Psychonomic Bulletin & Review, 23(1), 156–62. doi:10.3758/s13423-015-0844-1 CrossRef | Google Scholar
    Goodhew, S. C., Dawel, A., & Edwards, M. (2020). Standardizing measurement in psychological studies: On why one second has different value in a sprint versus a marathon. Behavior Research Methods. doi:10.3758/s13428-020-01383-7 CrossRef | Google Scholar
    Goodhew, S. C., & Edwards, M. (2016). Object individuation is invariant to attentional diffusion: Changes in the size of the attended region do not interact with object-substitution masking. Cognition, 157, 358–64. doi:10.1016/j.cognition.2016.10.006 CrossRef | Google Scholar
    Goodhew, S. C., & Edwards, M. (2019). Translating experimental paradigms into individual-differences research: Contributions, challenges, and practical recommendations. Consciousness and Cognition, 69, 14–25. doi:10.1016/j.concog.2019.01.008 CrossRef | Google Scholar
  • PubMed
  • Goodhew, S. C., Edwards, M., Ferber, S., & Pratt, J. (2015). Altered visual perception near the hands: A critical review of attentional and neurophysiological models. Neuroscience & Biobehavioral Reviews, 55, 223–33. doi:10.1016/j.neubiorev.2015.05.006 CrossRef | Google Scholar
  • PubMed
  • Goodhew, S. C., Lawrence, R. K., & Edwards, M. (2017). Testing the generality of the zoom-lens model: Evidence for visual-pathway specific effects of attended-region size on perception. Attention, Perception & Psychophysics, 79(4), 1147–64. doi:10.3758/s13414-017-1306-9 CrossRef | Google Scholar
  • PubMed
  • Goodhew, S. C., & Plummer, A. S. (2019). Flexibility in resizing attentional breadth: Asymmetrical versus symmetrical attentional contraction and expansion costs depends on context. Quarterly Journal of Experimental Psychology, 72(10), 2527–40. doi:10.1177/1747021819846831 CrossRef | Google Scholar
  • PubMed
  • Goodhew, S. C., Shen, E., & Edwards, M. (2016). Selective spatial enhancement: Attentional spotlight size impacts spatial but not temporal perception. Psychonomic Bulletin & Review, 23(4), 1144–9. doi:10.3758/s13423-015-0904-6 CrossRef | Google Scholar
    Gozli, D. G., West, G. L., & Pratt, J. (2012). Hand position alters vision by biasing processing through different visual pathways. Cognition, 124(2), 244–50. doi:10.1016/j.cognition.2012.04.008 CrossRef | Google Scholar
  • PubMed
  • Greene, M. R., & Oliva, A. (2009). The briefest of glances: The time course of natural scene understanding. Psychological Science, 20(4), 464–72. doi:10.1111/j.1467-9280.2009.02316.x CrossRef | Google Scholar
  • PubMed
  • Greenwood, P., & Parasuraman, R. (1999). Scale of attentional focus in visual search. Perception & Psychophysics, 61(5), 837–59. doi:10.3758/BF03206901 CrossRef | Google Scholar
  • PubMed
  • Greenwood, P., & Parasuraman, R. (2004). The scaling of spatial attention in visual search and its modification in healthy aging. Perception & Psychophysics, 66(1), 3–22. doi:10.3758/BF03194857 CrossRef | Google Scholar
  • PubMed
  • Gu, L., Yang, X., Li, L. M. W., Zhou, X., & Gao, D. G. (2017). Seeing the big picture: Broadening attention relieves sadness and depressed mood. Scandinavian Journal of Psychology, 58(4), 324–32. doi:10.1111/sjop.12376 CrossRef | Google Scholar
  • PubMed
  • Hanif, A., Ferrey, A. E., Frischen, A., Pozzobon, K., Eastwood, J. D., Smilek, D., & Fenske, M. J. (2012). Manipulations of attention enhance self-regulation. Acta Psychologica, 139(1), 104–10. doi:10.1016/j.actpsy.2011.09.010 CrossRef | Google Scholar
  • PubMed
  • Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 1166–86. doi:10.3758/s13428-017-0935-1 CrossRef | Google Scholar
    Hein, E., Rolke, B., & Ulrich, R. (2006). Visual attention and temporal discrimination: Differential effects of automatic and voluntary cueing. Visual Cognition, 13(1), 29–50. doi:10.1080/13506280500143524 CrossRef | Google Scholar
    Heitz, R. P., & Engle, R. W. (2007). Focusing the spotlight: individual differences in visual attention control. Journal of Experimental Psychology: General, 136(2), 217–40. doi:10.1037/0096-3445.136.2.217 Google Scholar
  • PubMed
  • Hoar, S., & Linnell, K. J. (2013). Cognitive load eliminates the global perceptual bias for unlimited exposure durations. Attention, Perception, & Psychophysics, 75(2), 210–15. doi:10.3758/s13414-012-0421-x CrossRef | Google Scholar
  • PubMed
  • Hock, H. S., Park, C. L., & Schoner, G. (2002). Self-organized pattern formation: experimental dissection of motion detection and motion integration by variation of attentional spread. Vision Research, 42(8), 991–1003. doi:10.1016/S0042-6989(02)00026-3 CrossRef | Google Scholar
  • PubMed
  • Hommel, B., Chapman, C. S., Cisek, P., Neyedli, H. F., Song, J.-H., & Welsh, T. N. (2019). No one knows what attention is. Attention, Perception, & Psychophysics, 81(7), 2288–303. doi:10.3758/s13414-019-01846-w CrossRef | Google Scholar
    Hotton, M., Derakshan, N., & Fox, E. (2018). A randomised controlled trial investigating the benefits of adaptive working memory training for working memory capacity and attentional control in high worriers. Behav Res Ther, 100, 67–77. doi:10.1016/j.brat.2017.10.011 CrossRef | Google Scholar
  • PubMed
  • Hubner, R. (2000). Attention shifting between global and local target levels: The persistence of level-repetition effects. Visual Cognition, 7(4), 465–84. doi:10.1080/135062800394612 CrossRef | Google Scholar
    Huttermann, S., Bock, O., & Memmert, D. (2012). The breadth of attention in old age. Ageing Research, 3(1), 67–70. doi:doi.org/10.4081/ar.2012.e10 CrossRef | Google Scholar
    Huttermann, S., & Memmert, D. (2015). The influence of motivational and mood states on visual attention: A quantification of systematic differences and casual changes in subjects’ focus of attention. Cognition & emotion, 29(3), 471–83. doi:10.1080/02699931.2014.920767 CrossRef | Google Scholar
  • PubMed
  • Huttermann, S., & Memmert, D. (2018). Effects of lab- and field-based attentional training on athletes’ attention-window. Psychology of Sport and Exercise, 38, 17–27. doi:10.1016/j.psychsport.2018.05.009 CrossRef | Google Scholar
    Huttermann, S., Memmert, D., & Simons, D. J. (2014). The size and shape of the attentional “spotlight” varies with differences in sports expertise. Journal of Experimental Psychology: Applied, 20(2), 147–57. doi:10.1037/xap0000012 Google Scholar
  • PubMed
  • Iacoviello, B. M., Wu, G., Abend, R., Murrough, J. W., Feder, A., Fruchter, E.,… Charney, D. S. (2014). Attention bias variability and symptoms of posttraumatic stress disorder. J Trauma Stress, 27(2), 232–9. doi:10.1002/jts.21899 CrossRef | Google Scholar
  • PubMed
  • Jefferies, L. N., & Di Lollo, V. (2015). When can spatial attention be deployed in the form of an annulus? Attention, Perception, & Psychophysics, 77(2), 413–22. doi:10.3758/s13414-014-0790-4 CrossRef | Google Scholar
  • PubMed
  • Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. In Long, J. B. & Baddeley, A. D., eds., Attention and Performance IX. Hillsdale, New Jersey: Lawrence Erlbaum Associates. 187–203 Google Scholar
    Kadel, H., Feldmann-Wustefeld, T., & Schubo, A. (2017). Selection history alters attentional filter settings persistently and beyond top-down control. Psychophysiology, 54(5), 736–54. doi:10.1111/psyp.12830 CrossRef | Google Scholar
  • PubMed
  • Kimchi, R., & Palmer, S. E. (1982). Form and texture in hierarchically constructed patterns. Journal of Experimental Psychology: Human Perception and Performance, 8(4), 521–35. doi:10.1037//0096-1523.8.4.521 Google Scholar
  • PubMed
  • Kinchla, R. A., & Wolfe, J. M. (1979). The order of visual processing: “Top-down,” “bottom-up,” or “middle-out”. Perception & Psychophysics, 25(3), 225–31. doi:10.3758/bf03202991 CrossRef | Google Scholar
  • PubMed
  • Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–47. doi:10.1016/S1364-6613(00)01452-2 CrossRef | Google Scholar
  • PubMed
  • Koldewyn, K., Jiang, Y., Weigelt, S., & Kanwisher, N. (2013). Global/Local Processing in Autism: Not a Disability, but a Disinclination. Journal of autism and developmental disorders, 43(10), 2329–40. doi:10.1007/s10803-013-1777-z CrossRef | Google Scholar
  • PubMed
  • Kosslyn, S. M., Brown, H. D., & Dror, I. E. (1999). Aging and the scope of visual attention. Gerontology, 45(2), 102–9. doi:10.1159/000022071 CrossRef | Google Scholar
  • PubMed
  • Koster, E. H., Crombez, G., Verschuere, B., Van Damme, S., & Wiersema, J. R. (2006). Components of attentional bias to threat in high trait anxiety: Facilitated engagement, impaired disengagement, and attentional avoidance. Behav Res Ther, 44(12), 1757–71. doi:10.1016/j.brat.2005.12.011 CrossRef | Google Scholar
  • PubMed
  • Kramer, J. H., Ellenberg, L., Leonard, J., & Share, L. J. (1996). Developmental sex differences in global-local perceptual bias. Neuropsychology, 10(3), 402–7. doi:10.1037/0894-4105.10.3.402 CrossRef | Google Scholar
    Kreitz, C., Furley, P., Memmert, D., & Simons, D. J. (2015). Working-memory performance is related to spatial breadth of attention. Psychological Research, 79(6), 1034–41. doi:10.1007/s00426-014-0633-x CrossRef | Google Scholar
  • PubMed
  • LaBerge, D. (1983). Spatial extent of attention to letters and words. Journal of Experimental Psychology: Human Perception and Performance, 9(3), 371–9. doi:10.1037/0096-1523.9.3.371 Google Scholar
  • PubMed
  • Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 451–68. doi:10.1037/0096-1523.21.3.451 Google Scholar
  • PubMed
  • Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9(2), 75–82. doi:10.1016/j.tics.2004.12.004 CrossRef | Google Scholar
  • PubMed
  • Lawrence, R. K., Edwards, M., Chan, G. W. C., Cox, J. A., & Goodhew, S. C. (2019). Does cultural background predict the spatial distribution of attention? Culture and Brain. doi:10.1007/s40167-019-00086-x CrossRef | Google Scholar
    Lawrence, R. K., Edwards, M., & Goodhew, S. C. (2018). Changes in the spatial spread of attention with ageing. Acta Psychologica, 188, 188–99. doi:10.1016/j.actpsy.2018.06.009 CrossRef | Google Scholar
  • PubMed
  • Lawrence, R. K., Edwards, M., & Goodhew, S. C. (2020). The impact of scaling rather than shaping attention: Changes in the scale of attention using global motion inducers influence both spatial and temporal acuity. Journal of Experimental Psychology: Human Perception and Performance, 46(3) 313–23.doi:10.1037/xhp0000708 Google Scholar
  • PubMed
  • Lawrence, R. K., Edwards, M. E., Talipski, L. A., & Goodhew, S. C. (2020). A critical review of the cognitive and perceptual factors influencing attentional scaling and visual processing. Psychonomic Bulletin and Review. doi:10.3758/s13423-019-01692-9 CrossRef | Google Scholar
    Leber, A. B., & Irons, J. L. (2019). A methodological toolbox for investigating attentional strategy. Current Opinion in Psychology, 29, 274–81. doi:10.1016/j.copsyc.2019.08.008 CrossRef | Google Scholar
  • PubMed
  • Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240(4853), 740–9. doi:10.1126/science.3283936 CrossRef | Google Scholar
  • PubMed
  • Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav Res Ther, 33(3), 335–43. doi:10.1016/0005-7967(94)00075-U CrossRef | Google Scholar
  • PubMed
  • MacLeod, C., & Clarke, P. J. F. (2015). The Attentional Bias Modification Approach to Anxiety Intervention. Clinical Psychological Science, 3(1), 58–78. doi:10.1177/2167702614560749 CrossRef | Google Scholar
    MacLeod, C., Grafton, B., & Notebaert, L. (2019). Anxiety-Linked Attentional Bias: Is It Reliable? Annu Rev Clin Psychol, 15(1), 529–54. doi:10.1146/annurev-clinpsy-050718-095505 CrossRef | Google Scholar
  • PubMed
  • MacLeod, C., Mathews, A., & Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95(1), 15–20. doi:10.1037//0021-843x.95.1.15 CrossRef | Google Scholar
  • PubMed
  • Macrae, C. N., & Lewis, H. L. (2002). Do I know you? Processing orientation and face recognition. Psychological Science, 13(2), 194–6. doi:10.1111/1467-9280.00436 CrossRef | Google Scholar
  • PubMed
  • McKone, E., Davies, A. A., Fernando, D., Aalders, R., Leung, H., Wickramariyaratne, T., & Platow, M. J. (2010). Asia has the global advantage: Race and visual attention. Vision Research, 50(16), 1540–9. doi:10.1016/j.visres.2010.05.010 CrossRef | Google Scholar
  • PubMed
  • Milne, E., & Szczerbinski, M. (2009). Global and local perceptual style, field-independence, and central coherence: An attempt at concept validation. Advances in Cognitive Psychology, 5, 1–26. doi:10.2478/v10053-008-0062-8 CrossRef | Google Scholar
  • PubMed
  • Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6(10), 414–17. doi:10.1016/0166-2236(88)2990190-X CrossRef | Google Scholar
    Moriya, J. (2018). Attentional networks and visuospatial working memory capacity in social anxiety. Cognition and Emotion, 32(1), 158–66. doi:10.1080/02699931.2016.1263601 CrossRef | Google Scholar
  • PubMed
  • Most, S. B., Chun, M. M., Widders, D. M., & Zald, D. H. (2005). Attentional rubbernecking: Cognitive control and personality in emotion-induced blindness. Psychonomic Bulletin & Review, 12(4), 654–61. doi:10.3758/BF03196754 CrossRef | Google Scholar
  • PubMed
  • Most, S. B., Smith, S. D., Cooter, A. B., Levy, B. N., & Zald, D. H. (2007). The naked truth: Positive, arousing distractors impair rapid target perception. Cognition and Emotion, 21, 964–81. doi:10.1080/02699930600959340 CrossRef | Google Scholar
    Mounts, J. R. W. (2000a). Attentional capture by abrupt onsets and feature singletons produces inhibitory surrounds. Perception & Psychophysics, 62(7), 1485–93. doi:10.3758/bf03212148 Google Scholar
  • PubMed
  • Mounts, J. R. W. (2000b). Evidence for suppressive mechanisms in attentional selection: Feature singletons produce inhibitory surrounds. Perception & Psychophysics, 62(5), 969–83. doi:10.3758/bf03212082 Google Scholar
  • PubMed
  • Mounts, J. R. W., & Edwards, A. A. (2016). Attentional breadth and trade-offs in spatial and temporal acuity. Visual Cognition, 24(7–8), 422–33. doi:10.1080/13506285.2017.1294637 CrossRef | Google Scholar
    Muller, M., Malinowski, P., Gruber, T., & Hillyard, S. (2003). Sustained division of the attentional spotlight. Nature, 424(6946), 309–12. doi:10.1038/nature01812 CrossRef | Google Scholar
  • PubMed
  • Muller, N. G., Bartelt, O. A., Donner, T. H., Villringer, A., & Brandt, S. A. (2003). A physiological correlate of the “zoom lens” of visual attention. Journal of Neuroscience, 23(9), 3561–5. doi:10.1523/JNEUROSCI.23-09-03561.2003 CrossRef | Google Scholar
  • PubMed
  • Müller, N. G., Mollenhauer, M., Rösler, A., & Kleinschmidt, A. (2005). The attentional field has a Mexican hat distribution. Vision Research, 45(9), 1129–37. doi:10.1016/j.visres.2004.11.003 CrossRef | Google Scholar
    Najmi, S., Hindash, A. C., & Amir, N. (2010). Executive control of attention in individuals with contamination-related obsessive-compulsive symptoms. Depression and anxiety, 27(9), 807–12. doi:10.1002/da.20703 CrossRef | Google Scholar
  • PubMed
  • Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29(11), 1631–47. doi:10.1016/0042-6989(89)90144-2 CrossRef | Google Scholar
  • PubMed
  • Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3), 353–83. doi:10.1016/0010-0285(77)90012-3 CrossRef | Google Scholar
    Navon, D. (1981). The forest revisited: More on global precedence. Psychological Research, 43(1), 1–32. doi:10.1007/bf00309635 CrossRef | Google Scholar
    Notebaert, L., Crombez, G., Van Damme, S., Durnez, W., & Theeuwes, J. (2013). Attentional prioritisation of threatening information: Examining the role of the size of the attentional window. Cognition and Emotion, 27(4), 621–31. doi:10.1080/02699931.2012.730036 CrossRef | Google Scholar
  • PubMed
  • Onie, S., & Most, S. B. (2017). Two roads diverged: Distinct mechanisms of attentional bias differentially predict negative affect and persistent negative thought. Emotion, 17(5), 884–94. doi:10.1037/emo0000280 CrossRef | Google Scholar
  • PubMed
  • Owsley, C. (2011). Aging and vision. Vision Research, 51(13), 1610–22. doi:10.1016/j.visres.2010.10.020 CrossRef | Google Scholar
  • PubMed
  • Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89. doi:10.1146/annurev-neuro-062111-150525 CrossRef | Google Scholar
    Pletzer, B., Scheuringer, A., & Scherndl, T. (2017). Global-local processing relates to spatial and verbal processing: implications for sex differences in cognition. Scientific Reports, 7(1), 10575. doi:10.1038/s41598-017-11013-6 CrossRef | Google Scholar
  • PubMed
  • Pomerantz, J. R. (1983). Global and local precedence: selective attention in form and motion perception. Journal of Experimental Psychology: General, 112(4), 516–40. Google Scholar
  • PubMed
  • Pomerantz, J. R., & Schwaitzberg, S. D. (1975). Grouping by proximity: Selective attention measures. Perception & Psychophysics, 18(5), 355–61. doi:10.3758/bf03211212 CrossRef | Google Scholar
    Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32(1), 3–25. doi:10.1080/00335558008248231 CrossRef | Google Scholar
  • PubMed
  • Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In Bouma, H & Bouwhuis, D, eds., Attention & Performance X, Hillsdale: Erlbaum, pp. 531–56. Google Scholar
    Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1–23. doi:10.1146/annurev.psych.58.110405.085516 CrossRef | Google Scholar
  • PubMed
  • Posner, M. I., Snyder, C. R. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160–74. doi:10.1037/0096-3445.109.2.160 Google Scholar
  • PubMed
  • Pringle, H. L., Irwin, D. E., Kramer, A. F., & Atchley, P. (2001). The role of attentional breadth in perceptual change detection. Psychonomic Bulletin & Review, 8(1), 89–95. doi:10.3758/bf03196143 CrossRef | Google Scholar
  • PubMed
  • Prinzmetal, W., McCool, C., & Park, S. (2005). Attention: reaction time and accuracy reveal different mechanisms. Journal of Experimental Psychology: General, 134(1), 73–92. doi:10.1037/0096-3445.134.1.73 CrossRef | Google Scholar
  • PubMed
  • Prinzmetal, W., Zvinyatskovskiy, A., Gutierrez, P., & Dilem, L. (2009). Voluntary and involuntary attention have different consequences: the effect of perceptual difficulty. Quarterly Journal of Experimental Psychology, 62(2), 352–69. doi:10.1080/17470210801954892 CrossRef | Google Scholar
  • PubMed
  • Proud, M., Goodhew, S. C., & Edwards, M. (2020). A vigilance avoidance account of spatial selectivity in dual-stream emotion induced blindness. Psychonomic Bulletin & Review. doi:10.3758/s13423-019-01690-x CrossRef | Google Scholar
    Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18(3), 849–60. doi:10.1037/0096-1523.18.3.849 Google Scholar
    Richard, A. M., Lee, H., & Vecera, S. P. (2008). Attentional spreading in object-based attention. Journal of Experimental Psychology: General, 34(4), 842–53. doi:10.1037/0096-1523.34.4.842 Google Scholar
  • PubMed
  • Robertson, L. C. (1996). Attentional persistence for features of hierarchical patterns. Journal of Experimental Psychology: General, 125(3), 227–49. doi:10.1037/0096-3445.125.3.227 Google Scholar
  • PubMed
  • Robertson, L. C., Egly, R., Lamb, M. R., & Kerth, L. (1993). Spatial attention and cuing to global and local levels of hierarchical structure. Journal of Experimental Psychology: Human Perception and Performance, 19(3), 471–87. doi:10.1037//0096-1523.19.3.471 Google Scholar
  • PubMed
  • Roenker, D. L., Cissell, G. M., Ball, K. K., Wadley, V. G., & Edwards, J. D. (2003). Speed-of-processing and driving simulator training result in improved driving performance. Hum Factors, 45(2), 218–33. doi:10.1518/hfes.45.2.218.27241 CrossRef | Google Scholar
  • PubMed
  • Rowe, G., Hirsh, J. B., & Anderson, A. K. (2007). Positive affect increases the breadth of attentional selection. Proceedings of the National Academy of Sciences, 104(1), 383–8. doi:10.1073/pnas.0605198104 CrossRef | Google Scholar
  • PubMed
  • Sasaki, Y., Hadjikhani, N., Fischl, B., Liu, A. K., Marret, S., Dale, A. M., & Tootell, R. B. H. (2001). Local and global attention are mapped retinotopically in human occipital cortex. Proceedings of the National Academy of Sciences, 98(4), 2077–82. doi:10.1073/pnas.98.4.2077 CrossRef | Google Scholar
  • PubMed
  • Schiller, P. H., & Logothetis, N. K. (1990). The color-opponent and broad-band channels of the primate visual system. Trends in Neurosciences, 13(10), 392–8. doi:10.1016/0166-2236(90)90117-s CrossRef | Google Scholar
  • PubMed
  • Schiller, P. H., Logothetis, N. K., & Charles, E. R. (1990). Functions of the color-opponent and broad-band channels of the visual-system. Nature, 343(6253), 68–70. doi:10.1038/343068a0 CrossRef | Google Scholar
    Sekuler, R., & Ball, K. (1986). Visual localization: age and practice. Journal of the Optical Society of America A, 3(6), 864–7. doi:10.1364/JOSAA.3.000864 CrossRef | Google Scholar
  • PubMed
  • Senzaki, S., Masuda, T., & Nand, K. (2014). Holistic Versus Analytic Expressions in Artworks: Cross-Cultural Differences and Similarities in Drawings and Collages by Canadian and Japanese School-Age Children. Journal of cross-cultural psychology, 45(8), 1297–316. doi:10.1177/0022022114537704 CrossRef | Google Scholar
    Seya, Y., Nakayasu, H., & Yagi, T. (2013). Useful Field of View in Simulated Driving: Reaction Times and Eye Movements of Drivers. i-Perception, 4(4), 285–98. doi:10.1068/i0512 CrossRef | Google Scholar
  • PubMed
  • Shomstein, S., Lee, J., & Behrmann, M. (2010). Top-down and bottom-up attentional guidance: investigating the role of the dorsal and ventral parietal cortices. Experimental Brain Research, 206(2), 197–208. doi:10.1007/s00221-010-2326-z CrossRef | Google Scholar
  • PubMed
  • Shulman, G. L., Sullivan, M. A., Gish, K., & Sakoda, W. J. (1986). The role of spatial-frequency channels in the perception of local and global structure. Perception, 15(3), 259–73. doi:10.1068/p150259 CrossRef | Google Scholar
  • PubMed
  • Spearman, C. (1910). CORRELATION CALCULATED FROM FAULTY DATA. British Journal of Psychology, 1904–1920, 3(3), 271–295. doi:doi:10.1111/j.2044-8295.1910.tb00206.x CrossRef | Google Scholar
    Srinivasan, N., & Hanif, A. (2010). Global-happy and local-sad: Perceptual processing affects emotion identification. Cognition and Emotion, 24(6), 1062–9. doi:10.1080/02699930903101103 CrossRef | Google Scholar
    Stoffer, T. H. (1993). The time course of attentional zooming: a comparison of voluntary and involuntary allocation of attention to the levels of compound stimuli. Psychological Research, 56(1), 14–25. CrossRef | Google Scholar
  • PubMed
  • Tanaka, K., & Saito, H. (1989). Analysis of motion of the visual field by direction, expansion/ contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol, 62(3), 626–41. doi:10.1152/jn.1989.62.3.626 Google Scholar
  • PubMed
  • Taylor, C. T., Cross, K., & Amir, N. (2016). Attentional control moderates the relationship between social anxiety symptoms and attentional disengagement from threatening information. Journal of Behavior Therapy and Experimental Psychiatry, 50, 68–76. doi:10.1016/j.jbtep.2015.05.008 CrossRef | Google Scholar
  • PubMed
  • Taylor, J. E., Chan, D., Bennett, P. J., & Pratt, J. (2015). Attentional cartography: mapping the distribution of attention across time and space. Attention Perception & Psychophysics, 77(7), 2240–6. doi:10.3758/s13414-015-0943-0 CrossRef | Google Scholar
  • PubMed
  • Thomas, L. E. (2015). Grasp Posture Alters Visual Processing Biases Near the Hands. Psychological Science, 26(5), 625–32. doi:10.1177/0956797615571418 CrossRef | Google Scholar
  • PubMed
  • Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37(2), 190–203. doi:10.1111/1469-8986.3720190 CrossRef | Google Scholar
  • PubMed
  • Ward, L. M. (1982). Determinants of attention to local and global features of visual forms. Journal of Experimental Psychology: Human Perception and Performance, 8(4), 562–81. doi:10.1037/0096-1523.8.4.562 Google Scholar
  • PubMed
  • White, C. N., Ratcliff, R., & Starns, J. S. (2011). Diffusion models of the flanker task: Discrete versus gradual attentional selection. Cognitive Psychology, 63(4), 210–38. doi:10.1016/j.cogpsych.2011.08.001 CrossRef | Google Scholar
  • PubMed
  • Wilkinson, D. T., Halligan, P. W., Marshall, J. C., Büchel, C., & Dolan, R. J. (2001). Switching between the Forest and the Trees: Brain Systems Involved in Local/Global Changed-Level Judgments. NeuroImage, 13(1), 56–67. doi:doi.org/10.1006/nimg.2000.0678 CrossRef | Google Scholar
  • PubMed
  • Wilson, K. E., Lowe, M. X., Ruppel, J., Pratt, J., & Ferber, S. (2016). The scope of no return: Openness predicts the spatial distribution of Inhibition of Return. Attention, Perception & Psychophysics, 78, 209–17. doi:10.3758/s13414-015-0991-5 CrossRef | Google Scholar
  • PubMed
  • Wood, J. M., Chaparro, A., Lacherez, P., & Hickson, L. (2012). Useful field of view predicts driving in the presence of distracters. Optom Vis Sci, 89(4), 373–81. doi:10.1097/OPX.0b013e31824c17ee CrossRef | Google Scholar
  • PubMed
  • Yeshurun, Y., & Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution. Nature, 396(6706), 72–5. doi:10.1038/23936 CrossRef | Google Scholar
  • PubMed
  • Yeshurun, Y., & Carrasco, M. (2008). The effects of transient attention on spatial resolution and the size of the attentional cue. Perception & Psychophysics, 70(1), 104–13. doi:10.3758/PP.70.1.104 CrossRef | Google Scholar
  • PubMed
  • Yeshurun, Y., & Levy, L. (2003). Transient spatial attention degrades temporal resolution. Psychological Science, 14(3), 225–31. doi:10.1111/1467-9280.02436 CrossRef | Google Scholar
  • PubMed
  • Yeshurun, Y., & Marom, G. (2008). Transient spatial attention and the perceived duration of brief visual events. Visual Cognition, 16(6), 826–48. doi:10.1080/13506280701588022 CrossRef | Google Scholar
    Yeshurun, Y., Montagna, B., & Carrasco, M. (2008). On the flexibility of sustained attention and its effects on a texture segmentation task. Vision Research, 48(1), 80–95. doi:10.1016/j.visres.2007.10.015 CrossRef | Google Scholar
  • PubMed
  • Yeshurun, Y., & Sabo, G. (2012). Differential effects of transient attention on inferred parvocellular and magnocellular processing. Vision Research, 74, 21–9. doi:10.1016/j.visres.2012.06.006 CrossRef | Google Scholar
  • PubMed
  • Yovel, G., Levy, J., & Yovel, I. (2001). Hemispheric asymmetries for global and local visual perception: effects of stimulus and task factors. Journal of Experimental Psychology: Human Perception and Performance, 27(6), 1369–85. doi:10.1037/0096-1523.27.6.1369 Google Scholar
  • PubMed
  • Zvielli, A., Bernstein, A., & Koster, E. H. W. (2015). Temporal Dynamics of Attentional Bias. Clinical Psychological Science, 3(5), 772–88. doi:10.1177/2167702614551572 CrossRef | Google Scholar
    Hypothesis Testing Reconsidered Francis, Gregory CrossRef | Google Scholar
    Chemical Senses in Feeding, Belonging, and Surviving: Or, Are You Going to Eat That? Breslin, Paul A. S. CrossRef | Google Scholar
    Multisensory Interactions in the Real-World Soto-Faraco, Salvador, Kvasova, Daria, Biau, Emmanuel, Ikumi, Nara, Ruzzoli, Manuela, Morís-Fernández, Luis, and Torralba, Mireia CrossRef | Google Scholar
    Human Color Vision and Tetrachromacy Jameson, Kimberly A., Satalich, Timothy A., Joe, Kirbi C., Bochko, Vladimir A., Atilano, Shari R., and Kenney, M. Cristina CrossRef | Google Scholar
    The Breadth of Visual Attention Goodhew, Stephanie C. Google Scholar

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Abstract views

    Total abstract views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.