We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
By means of a counter-example, we show that the Reilly theorem for the upper bound of the first non-trivial eigenvalue of the Laplace operator of a compact submanifold of Euclidean space (Reilly, 1977, Comment. Mat. Helvetici, 52, 525–533) does not work for a (codimension ⩾2) compact spacelike submanifold of Lorentz–Minkowski spacetime. In the search of an alternative result, it should be noted that the original technique in (Reilly, 1977, Comment. Mat. Helvetici, 52, 525–533) is not applicable for a compact spacelike submanifold of Lorentz–Minkowski spacetime. In this paper, a new technique, based on an integral formula on a compact spacelike section of the light cone in Lorentz–Minkowski spacetime is developed. The technique is genuine in our setting, that is, it cannot be extended to another semi-Euclidean spaces of higher index. As a consequence, a family of upper bounds for the first eigenvalue of the Laplace operator of a compact spacelike submanifold of Lorentz–Minkowski spacetime is obtained. The equality for one of these inequalities is geometrically characterized. Indeed, the eigenvalue achieves one of these upper bounds if and only if the compact spacelike submanifold lies minimally in a hypersphere of certain spacelike hyperplane. On the way, the Reilly original result is reproved if a compact submanifold of a Euclidean space is naturally seen as a compact spacelike submanifold of Lorentz–Minkowski spacetime through a spacelike hyperplane.
We establish new Strichartz estimates for orthonormal families of initial data in the case of the wave, Klein–Gordon and fractional Schrödinger equations. Our estimates extend those of Frank–Sabin in the case of the wave and Klein–Gordon equations, and generalize work of Frank et al. and Frank–Sabin for the Schrödinger equation. Due to a certain technical barrier, except for the classical Schrödinger equation, the Strichartz estimates for orthonormal families of initial data have not previously been established up to the sharp summability exponents in the full range of admissible pairs. We obtain the optimal estimates in various notable cases and improve the previous results.
The main novelty of this paper is our derivation and use of estimates for weighted oscillatory integrals, which we combine with an approach due to Frank and Sabin. Our weighted oscillatory integral estimates are, in a certain sense, rather delicate endpoint versions of known dispersive estimates with power-type weights of the form $|\xi |^{-\lambda }$ or $(1 + |\xi |^2)^{-\lambda /2}$, where $\lambda \in \mathbb {R}$. We achieve optimal decay rates by considering such weights with appropriate $\lambda \in \mathbb {C}$. For the wave and Klein–Gordon equations, our weighted oscillatory integral estimates are new. For the fractional Schrödinger equation, our results overlap with prior work of Kenig–Ponce–Vega in a certain regime. Our contribution to the theory of weighted oscillatory integrals has also been influenced by earlier work of Carbery–Ziesler, Cowling et al., and Sogge–Stein.
Finally, we provide some applications of our new Strichartz estimates for orthonormal families of data to the theory of infinite systems of Hartree type, weighted velocity averaging lemmas for kinetic transport equations, and refined Strichartz estimates for data in Besov spaces.
In this paper we give sufficient conditions to obtain continuity results of solutions for the so called ϕ-Laplacian Δϕ with respect to domain perturbations. We point out that this kind of results can be extended to a more general class of operators including, for instance, nonlocal nonstandard growth type operators.
In this article we consider the ergodic risk-sensitive control problem for a large class of multidimensional controlled diffusions on the whole space. We study the minimization and maximization problems under either a blanket stability hypothesis, or a near-monotone assumption on the running cost. We establish the convergence of the policy improvement algorithm for these models. We also present a more general result concerning the region of attraction of the equilibrium of the algorithm.
In this paper, we look at a linear system of ordinary differential equations as derived from the two-dimensional Ginzburg–Landau equation. In two cases, it is known that this system admits bounded solutions coming from the invariance of the Ginzburg–Landau equation by translations and rotations. The specific contribution of our work is to prove that in the other cases, the system does not admit any bounded solutions. We show that this bounded solution problem is related to an eigenvalue problem.
We consider the focussing fractional periodic Korteweg–deVries (fKdV) and fractional periodic non-linear Schrödinger equations (fNLS) equations, with L2 sub-critical dispersion. In particular, this covers the case of the periodic KdV and Benjamin-Ono models. We construct two parameter family of bell-shaped travelling waves for KdV (standing waves for NLS), which are constrained minimizers of the Hamiltonian. We show in particular that for each $\lambda \gt 0$, there is a travelling wave solution to fKdV and fNLS $\phi : \|\phi \|_{L^2[-T,T]}^2=\lambda $, which is non-degenerate. We also show that the waves are spectrally stable and orbitally stable, provided the Cauchy problem is locally well-posed in Hα/2[ − T, T] and a natural technical condition. This is done rigorously, without any a priori assumptions on the smoothness of the waves or the Lagrange multipliers.
In this article, we study some Kramers–Fokker–Planck operators with a polynomial potential
$V(q)$
of degree greater than two having quadratic limiting behaviour. This work provides an accurate global subelliptic estimate for Kramers–Fokker–Planck operators under some conditions imposed on the potential.
For Laplacians defined by measures on a bounded domain in ℝn, we prove analogues of the classical eigenvalue estimates for the standard Laplacian: lower bound of sums of eigenvalues by Li and Yau, and gaps of consecutive eigenvalues by Payne, Pólya and Weinberger. This work is motivated by the study of spectral gaps for Laplacians on fractals.
We show that the spectrum of the relativistic mean curvature operator on a bounded domain Ω ⊂ ℝN (N ⩾ 1) having smooth boundary, subject to the homogeneous Dirichlet boundary condition, is exactly the interval (λ1(2), ∞), where λ1(2) stands for the principal frequency of the Laplace operator in Ω.
We show that for any n divisible by 3, almost all order-n Steiner triple systems admit a decomposition of almost all their triples into disjoint perfect matchings (that is, almost all Steiner triple systems are almost resolvable).
We show that there is nonuniqueness for the Calderón problem with partial data for Riemannian metrics with Hölder continuous coefficients in dimension greater than or equal to three. We provide simple counterexamples in the case of cylindrical Riemannian manifolds with boundary having two ends. The coefficients of these metrics are smooth in the interior of the manifold and are only Hölder continuous of order
$\unicode[STIX]{x1D70C}<1$
at the end where the measurements are made. More precisely, we construct a toroidal ring
$(M,g)$
and we show that there exist in the conformal class of
$g$
an infinite number of Riemannian metrics
$\tilde{g}=c^{4}g$
such that their corresponding partial Dirichlet-to-Neumann maps at one end coincide. The corresponding smooth conformal factors are harmonic with respect to the metric
$g$
and do not satisfy the unique continuation principle.
We obtain generalizations of the classical Menchov–Rademacher theorem to the case of continuous orthogonal systems. These results are applied to show the existence of Moller wave operators in Schrödinger evolution.
In this paper we study a general eigenvalue problem for the so called (p, 2)-Laplace operator on a smooth bounded domain Ω ⊂ ℝN under a nonlinear Steklov type boundary condition, namely
For positive weight functions a and b satisfying appropriate integrability and boundedness assumptions, we show that, for all p>1, the eigenvalue set consists of an isolated null eigenvalue plus a continuous family of eigenvalues located away from zero.
Given a smooth compact hypersurface
$M$
with boundary
$\unicode[STIX]{x1D6F4}=\unicode[STIX]{x2202}M$
, we prove the existence of a sequence
$M_{j}$
of hypersurfaces with the same boundary as
$M$
, such that each Steklov eigenvalue
$\unicode[STIX]{x1D70E}_{k}(M_{j})$
tends to zero as
$j$
tends to infinity. The hypersurfaces
$M_{j}$
are obtained from
$M$
by a local perturbation near a point of its boundary. Their volumes and diameters are arbitrarily close to those of
$M$
, while the principal curvatures of the boundary remain unchanged.
Using Roelcke’s formula for the Green function, we explicitly construct a basis in the kernel of the adjoint Laplacian on a compact polyhedral surface
$X$
and compute the
$S$
-matrix of
$X$
at the zero value of the spectral parameter. We apply these results to study various self-adjoint extensions of a symmetric Laplacian on a compact polyhedral surface of genus two with a single conical point. It turns out that the behaviour of the
$S$
-matrix at the zero value of the spectral parameter is sensitive to the geometry of the polyhedron.
For a family of elliptic operators with periodically oscillating coefficients, $-{\rm div}(A(\cdot /\varepsilon )\nabla )$ with tiny ε > 0, we comprehensively study the first-order expansions of eigenvalues and eigenfunctions (eigenspaces) for both the Dirichlet and Neumann problems in bounded, smooth and strictly convex domains (or more general domains of finite type). A new first-order correction term is introduced to derive the expansion of eigenfunctions in L2 or $H^1_{\rm loc}$. Our results rely on the recent progress on the homogenization of boundary layer problems.
The second eigenvalue of the Robin Laplacian is shown to be maximal for the disk among simply-connected planar domains of fixed area when the Robin parameter is scaled by perimeter in the form
$\unicode[STIX]{x1D6FC}/L(\unicode[STIX]{x1D6FA})$
, and
$\unicode[STIX]{x1D6FC}$
lies between
$-2\unicode[STIX]{x1D70B}$
and
$2\unicode[STIX]{x1D70B}$
. Corollaries include Szegő’s sharp upper bound on the second eigenvalue of the Neumann Laplacian under area normalization, and Weinstock’s inequality for the first nonzero Steklov eigenvalue for simply-connected domains of given perimeter.
The first Robin eigenvalue is maximal, under the same conditions, for the degenerate rectangle. When area normalization on the domain is changed to conformal mapping normalization and the Robin parameter is positive, the maximiser of the first eigenvalue changes back to the disk.
This paper is concerned with the maximisation of the
$k$
-th eigenvalue of the Laplacian amongst flat tori of unit volume in dimension
$d$
as
$k$
goes to infinity. We show that in any dimension maximisers exist for any given
$k$
, but that any sequence of maximisers degenerates as
$k$
goes to infinity when the dimension is at most 10. Furthermore, we obtain specific upper and lower bounds for the injectivity radius of any sequence of maximisers. We also prove that flat Klein bottles maximising the
$k$
-th eigenvalue of the Laplacian exhibit the same behaviour. These results contrast with those obtained recently by Gittins and Larson, stating that sequences of optimal cuboids for either Dirichlet or Neumann boundary conditions converge to the cube no matter the dimension. We obtain these results via Weyl asymptotics with explicit control of the remainder in terms of the injectivity radius. We reduce the problem at hand to counting lattice points inside anisotropically expanding domains, where we generalise methods of Yu. Kordyukov and A. Yakovlev by considering domains that expand at different rates in various directions.
We consider the Laplace operator in a tubular neighbourhood of a conical surface of revolution, subject to an Aharonov-Bohm magnetic field supported on the axis of symmetry and Dirichlet boundary conditions on the boundary of the domain. We show that there exists a critical total magnetic flux depending on the aperture of the conical surface for which the system undergoes an abrupt spectral transition from infinitely many eigenvalues below the essential spectrum to an empty discrete spectrum. For the critical flux, we establish a Hardy-type inequality. In the regime with an infinite discrete spectrum, we obtain sharp spectral asymptotics with a refined estimate of the remainder and investigate the dependence of the eigenvalues on the aperture of the surface and the flux of the magnetic field.
The stationary Gross–Pitaevskii equation in one dimension is considered with a complex periodic potential satisfying the conditions of the 𝒫𝒯 (parity-time reversal) symmetry. Under rather general assumptions on the potentials, we prove bifurcations of 𝒫𝒯-symmetric nonlinear bound states from the end points of a real interval in the spectrum of the non-selfadjoint linear Schrödinger operator with a complex 𝒫𝒯-symmetric periodic potential. The nonlinear bound states are approximated by the effective amplitude equation, which bears the form of the cubic nonlinear Schrödinger equation. In addition, we provide sufficient conditions for the appearance of complex spectral bands when the complex 𝒫𝒯-symmetric potential has an asymptotically small imaginary part.