We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Jannsen asked whether the rational cycle class map in continuous
$\ell $
-adic cohomology is injective, in every codimension for all smooth projective varieties over a field of finite type over the prime field. As recently pointed out by Schreieder, the integral version of Jannsen’s question is also of interest. We exhibit several examples showing that the answer to the integral version is negative in general. Our examples also have consequences for the coniveau filtration on Chow groups and the transcendental Abel-Jacobi map constructed by Schreieder.
Let $\mathbb {V}$ be a polarized variation of Hodge structure over a smooth complex quasi-projective variety $S$. In this paper, we give a complete description of the typical Hodge locus for such variations. We prove that it is either empty or equidistributed with respect to a natural differential form, the pull–push form. In particular, it is always analytically dense when the pull–push form does not vanish. When the weight is two, the Hodge numbers are $(q,p,q)$ and the dimension of $S$ is least $rq$, we prove that the typical locus where the Picard rank is at least $r$ is equidistributed in $S$ with respect to the volume form $c_q^r$, where $c_q$ is the $q$th Chern form of the Hodge bundle. We obtain also several equidistribution results of the typical locus in Shimura varieties: a criterion for the density of the typical Hodge loci of a variety in $\mathcal {A}_g$, equidistribution of certain families of CM points and equidistribution of Hecke translates of curves and surfaces in $\mathcal {A}_g$. These results are proved in the much broader context of dynamics on homogeneous spaces of Lie groups which are of independent interest. The pull–push form appears in this greater generality, we provide several tools to determine it, and we compute it in many examples.
We transfer several elementary geometric properties of rigid-analytic spaces to the world of adic spaces, more precisely to the category of adic spaces which are locally of (weakly) finite type over a non-archimedean field. This includes normality, irreducibility (in particular, irreducible components), and a Stein factorization theorem. Most notably, we show that a finite morphism in our category of adic spaces is automatically open if the target is normal and both source and target are of the same pure dimension. Moreover, our version of the Stein factorization theorem includes a statement about the geometric connectedness of fibers which we have not found in the literature of rigid-analytic or Berkovich spaces.
For a nonconstant elliptic surface over $\mathbb {P}^1$ defined over $\mathbb {Q}$, it is a result of Silverman [‘Heights and the specialization map for families of abelian varieties’, J. reine angew. Math.342 (1983), 197–211] that the Mordell–Weil rank of the fibres is at least the rank of the group of sections, up to finitely many fibres. If the elliptic surface is nonisotrivial, one expects that this bound is an equality for infinitely many fibres, although no example is known unconditionally. Under the Bunyakovsky conjecture, such an example has been constructed by Neumann [‘Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. I’, Math. Nachr.49 (1971), 107–123] and Setzer [‘Elliptic curves of prime conductor’, J. Lond. Math. Soc. (2)10 (1975), 367–378]. In this note, we show that the Legendre elliptic surface has the desired property, conditional on the existence of infinitely many Mersenne primes.
A superelliptic curve over a discrete valuation ring
$\mathscr{O}$
of residual characteristic p is a curve given by an equation
$\mathscr{C}\;:\; y^n=\,f(x)$
, with
$\textrm{Disc}(\,f)\neq 0$
. The purpose of this article is to describe the Galois representation attached to such a curve under the hypothesis that f(x) has all its roots in the fraction field of
$\mathscr{O}$
and that
$p \nmid n$
. Our results are inspired on the algorithm given in Bouw and WewersGlasg (Math. J.59(1) (2017), 77–108.) but our description is given in terms of a cluster picture as defined in Dokchitser et al. (Algebraic curves and their applications, Contemporary Mathematics, vol. 724 (American Mathematical Society, Providence, RI, 2019), 73–135.).
We investigate a novel geometric Iwasawa theory for
${\mathbf Z}_p$
-extensions of function fields over a perfect field k of characteristic
$p>0$
by replacing the usual study of p-torsion in class groups with the study of p-torsion class group schemes. That is, if
$\cdots \to X_2 \to X_1 \to X_0$
is the tower of curves over k associated with a
${\mathbf Z}_p$
-extension of function fields totally ramified over a finite nonempty set of places, we investigate the growth of the p-torsion group scheme in the Jacobian of
$X_n$
as
$n\rightarrow \infty $
. By Dieudonné theory, this amounts to studying the first de Rham cohomology groups of
$X_n$
equipped with natural actions of Frobenius and of the Cartier operator V. We formulate and test a number of conjectures which predict striking regularity in the
$k[V]$
-module structure of the space
$M_n:=H^0(X_n, \Omega ^1_{X_n/k})$
of global regular differential forms as
$n\rightarrow \infty .$
For example, for each tower in a basic class of
${\mathbf Z}_p$
-towers, we conjecture that the dimension of the kernel of
$V^r$
on
$M_n$
is given by
$a_r p^{2n} + \lambda _r n + c_r(n)$
for all n sufficiently large, where
$a_r, \lambda _r$
are rational constants and
$c_r : {\mathbf Z}/m_r {\mathbf Z} \to {\mathbf Q}$
is a periodic function, depending on r and the tower. To provide evidence for these conjectures, we collect extensive experimental data based on new and more efficient algorithms for working with differentials on
${\mathbf Z}_p$
-towers of curves, and we prove our conjectures in the case
$p=2$
and
$r=1$
.
We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math.31(2) (2022), 637–651] for
$S_{k,l}(\Gamma _0(T))$
when
$\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$
. We frame and check the conjecture for primes
$\mathfrak {p}$
and higher levels
$\mathfrak {p}\mathfrak {m}$
, and show that a part of the conjecture for level
$\mathfrak {p} \mathfrak {m}$
does not hold if
$\mathfrak {m}\ne A$
and
$(k,l)=(2,1)$
.
In order to study integral points of bounded log-anticanonical height on weak del Pezzo surfaces, we classify weak del Pezzo pairs. As a representative example, we consider a quartic del Pezzo surface of singularity type
$\mathbf {A}_1+\mathbf {A}_3$
and prove an analogue of Manin’s conjecture for integral points with respect to its singularities and its lines.
For each prime p, we show that there exist geometrically simple abelian varieties A over
${\mathbb Q}$
with . Specifically, for any prime
$N\equiv 1 \ \pmod p$
, let
$A_f$
be an optimal quotient of
$J_0(N)$
with a rational point P of order p, and let
$B = A_f/\langle P \rangle $
. Then the number of positive integers
$d \leq X$
with is
$ \gg X/\log X$
, where
$\widehat B_d$
is the dual of the dth quadratic twist of B. We prove this more generally for abelian varieties of
$\operatorname {\mathrm {GL}}_2$
-type with a p-isogeny satisfying a mild technical condition. In the special case of elliptic curves, we give stronger results, including many examples where for an explicit positive proportion of integers d.
We prove new results on the distribution of rational points on ramified covers of abelian varieties over finitely generated fields $k$ of characteristic zero. For example, given a ramified cover $\pi : X \to A$, where $A$ is an abelian variety over $k$ with a dense set of $k$-rational points, we prove that there is a finite-index coset $C \subset A(k)$ such that $\pi (X(k))$ is disjoint from $C$. Our results do not seem to be in the range of other methods available at present; they confirm predictions coming from Lang's conjectures on rational points, and also go in the direction of an issue raised by Serre regarding possible applications to the inverse Galois problem. Finally, the conclusions of our work may be seen as a sharp version of Hilbert's irreducibility theorem for abelian varieties.
Let A be an abelian scheme of dimension at least four over a
$\mathbb {Z}$
-finitely generated integral domain R of characteristic zero, and let L be an ample line bundle on A. We prove that the set of smooth hypersurfaces D in A representing L is finite by showing that the moduli stack of such hypersurfaces has only finitely many R-points. We accomplish this by using level structures to interpolate finiteness results between this moduli stack and the stack of canonically polarized varieties.
We prove finiteness results for sets of varieties over number fields with good reduction outside a given finite set of places using cyclic covers. We obtain a version of the Shafarevich conjecture for weighted projective surfaces, double covers of abelian varieties and reduce the Shafarevich conjecture for hypersurfaces to the case of hypersurfaces of high dimension. These are special cases of a general setup for integral points on moduli stacks of cyclic covers, and our arithmetic results are achieved via a version of the Chevalley–Weil theorem for stacks.
We study the Betti map of a particular (but relevant) section of the family of Jacobians of hyperelliptic curves using the polynomial Pell equation
$A^2-DB^2=1$
, with
$A,B,D\in \mathbb {C}[t]$
and certain ramified covers
$\mathbb {P}^1\to \mathbb {P}^1$
arising from such equation and having heavy constrains on their ramification. In particular, we obtain a special case of a result of André, Corvaja and Zannier on the submersivity of the Betti map by studying the locus of the polynomials D that fit in a Pell equation inside the space of polynomials of fixed even degree. Moreover, Riemann existence theorem associates to the abovementioned covers certain permutation representations: We are able to characterize the representations corresponding to ‘primitive’ solutions of the Pell equation or to powers of solutions of lower degree and give a combinatorial description of these representations when D has degree 4. In turn, this characterization gives back some precise information about the rational values of the Betti map.
Let $p$ be a prime number. Kęstutis Česnavičius proved that for an abelian variety $A$ over a global field $K$, the $p$-Selmer group $\mathrm {Sel}_{p}(A/L)$ grows unboundedly when $L$ ranges over the $(\mathbb {Z}/p\mathbb {Z})$-extensions of $K$. Moreover, he raised a further problem: is $\dim _{\mathbb {F}_{p}} \text{III} (A/L) [p]$ also unbounded under the above conditions? In this paper, we give a positive answer to this problem in the case $p \neq \mathrm {char}\,K$. As an application, this result enables us to generalize the work of Clark, Sharif and Creutz on the growth of potential $\text{III}$ in cyclic extensions. We also answer a problem proposed by Lim and Murty concerning the growth of the fine Tate–Shafarevich groups.
We define cohomological complexes of locally compact abelian groups associated with varieties over p-adic fields and prove a duality theorem under some assumption. Our duality takes the form of Pontryagin duality between locally compact motivic cohomology groups.
Given a K3 surface X over a number field K with potentially good reduction everywhere, we prove that the set of primes of K where the geometric Picard rank jumps is infinite. As a corollary, we prove that either
$X_{\overline {K}}$
has infinitely many rational curves or X has infinitely many unirational specialisations.
Our result on Picard ranks is a special case of more general results on exceptional classes for K3 type motives associated to GSpin Shimura varieties. These general results have several other applications. For instance, we prove that an abelian surface over a number field K with potentially good reduction everywhere is isogenous to a product of elliptic curves modulo infinitely many primes of K.
For a smooth rigid space X over a perfectoid field extension K of
$\mathbb {Q}_p$
, we investigate how the v-Picard group of the associated diamond
$X^{\diamondsuit }$
differs from the analytic Picard group of X. To this end, we construct a left-exact ‘Hodge–Tate logarithm’ sequence
We deduce some analyticity criteria which have applications to p-adic modular forms. For algebraically closed K, we show that the sequence is also right-exact if X is proper or one-dimensional. In contrast, we show that, for the affine space
$\mathbb {A}^n$
, the image of the Hodge–Tate logarithm consists precisely of the closed differentials. It follows that, up to a splitting, v-line bundles may be interpreted as Higgs bundles. For proper X, we use this to construct the p-adic Simpson correspondence of rank one.
Given a singular modulus
$j_0$
and a set of rational primes S, we study the problem of effectively determining the set of singular moduli j such that
$j-j_0$
is an S-unit. For every
$j_0 \neq 0$
, we provide an effective way of finding this set for infinitely many choices of S. The same is true if
$j_0=0$
and we assume the Generalised Riemann Hypothesis. Certain numerical experiments will also lead to the formulation of a “uniformity conjecture” for singular S-units.