We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present and thoroughly study natural Polish spaces of separable Banach spaces. These spaces are defined as spaces of norms, respectively pseudonorms, on the countable infinite-dimensional rational vector space. We provide an exhaustive comparison of these spaces with admissible topologies recently introduced by Godefroy and Saint-Raymond and show that Borel complexities differ little with respect to these two topological approaches.
We investigate generic properties in these spaces and compare them with those in admissible topologies, confirming the suspicion of Godefroy and Saint-Raymond that they depend on the choice of the admissible topology.
Any Lipschitz map $f : M \to N$ between two pointed metric spaces may be extended in a unique way to a bounded linear operator $\widehat {f} : \mathcal {F}(M) \to \mathcal {F}(N)$ between their corresponding Lipschitz-free spaces. In this paper, we give a necessary and sufficient condition for $\widehat {f}$ to be compact in terms of metric conditions on $f$. This extends a result by A. Jiménez-Vargas and M. Villegas-Vallecillos in the case of non-separable and unbounded metric spaces. After studying the behaviour of weakly convergent sequences made of finitely supported elements in Lipschitz-free spaces, we also deduce that $\widehat {f}$ is compact if and only if it is weakly compact.
We prove a general principle satisfied by weakly precompact sets of Lipschitz-free spaces. By this principle, certain infinite dimensional phenomena in Lipschitz-free spaces over general metric spaces may be reduced to the same phenomena in free spaces over their compact subsets. As easy consequences we derive several new and some known results. The main new results are: $\mathcal {F}(X)$ is weakly sequentially complete for every superreflexive Banach space $X$, and $\mathcal {F}(M)$ has the Schur property and the approximation property for every scattered complete metric space $M$.
We introduce some notions of conditional mean dimension for a factor map between two topological dynamical systems and discuss their properties. With the help of these notions, we obtain an inequality to estimate the mean dimension of an extension system. The conditional mean dimension for G-extensions is computed. We also exhibit some applications in dynamical embedding problems.
We study a strengthening of the notion of a perfectly meager set. We say that a subset A of a perfect Polish space X is countably perfectly meager in X, if for every sequence of perfect subsets
$\{P_n: n \in \mathbb N\}$
of X, there exists an
$F_\sigma $
-set F in X such that
$A \subseteq F$
and
$F\cap P_n$
is meager in
$P_n$
for each n. We give various characterizations and examples of countably perfectly meager sets. We prove that not every universally meager set is countably perfectly meager correcting an earlier result of Bartoszyński.
We prove that the restriction of a given orthogonal-complete metric space to the closure of the orbit induced by the origin point with respect to an orthogonal-preserving and orthogonal-continuous map is a complete metric space. Then we show that many existence results on fixed points in orthogonal-complete metric spaces can be proved by using the corresponding existence results in complete metric spaces.
Let
$M(A,n)$
be the Moore space of type
$(A,n)$
for an Abelian group A and
$n\ge 2$
. We show that the loop space
$\Omega (M(A,n))$
is homotopy nilpotent if and only if A is a subgroup of the additive group
$\mathbb {Q}$
of the field of rationals. Homotopy nilpotency of loop spaces
$\Omega (M(A,1))$
is discussed as well.
In this note, we show that in a complete
$\operatorname {\mathrm {CAT}}(0)$
space pointwise convergence of proximal mappings under a certain normalization condition implies Mosco convergence.
We prove that if the set of unordered pairs of real numbers is coloured by finitely many colours, there is a set of reals homeomorphic to the rationals whose pairs have at most two colours. Our proof uses large cardinals and verifies a conjecture of Galvin from the 1970s. We extend this result to an essentially optimal class of topological spaces in place of the reals.
Consider a definably complete uniformly locally o-minimal expansion of the second kind of a densely linearly ordered abelian group. Let $f:X \rightarrow R^n$ be a definable map, where X is a definable set and R is the universe of the structure. We demonstrate the inequality $\dim (f(X)) \leq \dim (X)$ in this paper. As a corollary, we get that the set of the points at which f is discontinuous is of dimension smaller than $\dim (X)$. We also show that the structure is definably Baire in the course of the proof of the inequality.
Using the category of metric spaces as a template, we develop a metric analogue of the categorical semantics of classical/intuitionistic logic, and show that the natural notion of predicate in this “continuous semantics” is equivalent to the a priori separate notion of predicate in continuous logic, a logic which is independently well-studied by model theorists and which finds various applications. We show this equivalence by exhibiting the real interval
$[0,1]$
in the category of metric spaces as a “continuous subobject classifier” giving a correspondence not only between the two notions of predicate, but also between the natural notion of quantification in the continuous semantics and the existing notion of quantification in continuous logic.
Along the way, we formulate what it means for a given category to behave like the category of metric spaces, and afterwards show that any such category supports the aforementioned continuous semantics. As an application, we show that categories of presheaves of metric spaces are examples of such, and in fact even possess continuous subobject classifiers.
We establish that the existence of a winning strategy in certain topological games, closely related to a strong game of Choquet, played in a topological space $X$ and its hyperspace $K(X)$ of all nonempty compact subsets of $X$ equipped with the Vietoris topology, is equivalent for one of the players. For a separable metrizable space $X$, we identify a game-theoretic condition equivalent to $K(X)$ being hereditarily Baire. It implies quite easily a recent result of Gartside, Medini and Zdomskyy that characterizes hereditary Baire property of hyperspaces $K(X)$ over separable metrizable spaces $X$ via the Menger property of the remainder of a compactification of $X$. Subsequently, we use topological games to study hereditary Baire property in spaces of probability measures and in hyperspaces over filters on natural numbers. To this end, we introduce a notion of strong $P$-filter ${\mathcal{F}}$ and prove that it is equivalent to $K({\mathcal{F}})$ being hereditarily Baire. We also show that if $X$ is separable metrizable and $K(X)$ is hereditarily Baire, then the space $P_{r}(X)$ of Borel probability Radon measures on $X$ is hereditarily Baire too. It follows that there exists (in ZFC) a separable metrizable space $X$, which is not completely metrizable with $P_{r}(X)$ hereditarily Baire. As far as we know, this is the first example of this kind.
To study when a paratopological group becomes a topological group, Arhangel’skii et al. [‘Topological games and topologies on groups’, Math. Maced.8 (2010), 1–19] introduced the class of $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourable spaces. We show that every $\unicode[STIX]{x1D707}$-complete (or normal) $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourable semitopological group is a topological group. We prove that the product of a $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourable space and a strongly Fréchet $(\unicode[STIX]{x1D6FC},G_{\unicode[STIX]{x1D6F1}})$-favourable space is $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourable. We also show that continuous closed irreducible mappings preserve the $(\,\unicode[STIX]{x1D6FD},G_{\unicode[STIX]{x1D6F1}})$-unfavourableness in both directions.
We construct a separately continuous function $e:E\times K\rightarrow \{0,1\}$ on the product of a Baire space $E$ and a compact space $K$ such that no restriction of $e$ to any non-meagre Borel set in $E\times K$ is continuous. The function $e$ has no points of joint continuity, and, hence, it provides a negative solution of Talagrand’s problem in Talagrand [Espaces de Baire et espaces de Namioka, Math. Ann.270 (1985), 159–164].
We study topological properties of the escaping endpoints and fast escaping endpoints of the Julia set of complex exponential $\exp (z)+a$ when $a\in (-\infty ,-1)$. We show neither space is homeomorphic to the whole set of endpoints. This follows from a general result stating that for every transcendental entire function $f$, the escaping Julia set $I(f)\cap J(f)$ is first category.
We study sets of measure-preserving transformations on Lebesgue spaces with continuous measures taking into account extreme scales of variations of weak mixing. It is shown that the generic dynamical behaviour depends on subsequences of time going to infinity. We also present corresponding generic sets of (probability) invariant measures with respect to topological shifts over finite alphabets and Axiom A diffeomorphisms over topologically mixing basic sets.
In this paper we integrate two strands of the literature on stability of general state Markov chains: conventional, total-variation-based results and more recent order-theoretic results. First we introduce a complete metric over Borel probability measures based on ‘partial’ stochastic dominance. We then show that many conventional results framed in the setting of total variation distance have natural generalizations to the partially ordered setting when this metric is adopted.
We consider generalised metrisability and cardinal invariants in quasitopological groups. We construct examples to show that some equalities of cardinal invariants in topological groups cannot be extended to quasitopological groups.
Based on the metrisation of $b$-metric spaces of Paluszyński and Stempak [‘On quasi-metric and metric spaces’, Proc. Amer. Math. Soc.137(12) (2009), 4307–4312], we prove that every $b$-metric space has a completion. Our approach resolves the limitation in using the quotient space of equivalence classes of Cauchy sequences to obtain a completion of a $b$-metric space.
In this paper we first give a negative answer to a question of Amini-Harandi [‘Best proximity point theorems for cyclic strongly quasi-contraction mappings’, J. Global Optim.56 (2013), 1667–1674] on a best proximity point theorem for cyclic quasi-contraction maps. Then we prove some new results on best proximity point theorems that show that results of Amini-Harandi for cyclic strongly quasi-contractions are true under weaker assumptions.