We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Vertically vibrating a liquid bath may allow a self-propelled wave-particle entity to move on its free surface. The horizontal dynamics of this walking droplet, under the constraint of an external drag force, can be described adequately by an integro-differential trajectory equation. For a sinusoidal wave field, this equation is equivalent to a closed three-dimensional system of nonlinear ODEs. We explicitly define a stability boundary for the system and a quantised criterion for its partial integrability in the meromorphic category.
This paper proves the energy equality for distributional solutions to fractional Navier-Stokes equations, which gives a new proof and covers the classical result of Galdi [Proc. Amer. Math. Soc. 147 (2019), 785–792].
In this paper, we considered the global strong solution to the 3D incompressible micropolar equations with fractional partial dissipation. Whether or not the classical solution to the 3D Navier–Stokes equations can develop finite-time singularity remains an outstanding open problem, so does the same issue on the 3D incompressible micropolar equations. We establish the global-in-time existence and uniqueness strong solutions to the 3D incompressible micropolar equations with fractional partial velocity dissipation and microrotation diffusion with the initial data
$(\mathbf {u}_0,\ \mathbf {w}_0)\in H^1(\mathbb {R}^3)$
.
This paper focuses on a 2D magnetohydrodynamic system with only horizontal dissipation in the domain $\Omega = \mathbb {T}\times \mathbb {R}$ with $\mathbb {T}=[0,\,1]$ being a periodic box. The goal here is to understand the stability problem on perturbations near the background magnetic field $(1,\,0)$. Due to the lack of vertical dissipation, this stability problem is difficult. This paper solves the desired stability problem by simultaneously exploiting two smoothing and stabilizing mechanisms: the enhanced dissipation due to the coupling between the velocity and the magnetic fields, and the strong Poincaré type inequalities for the oscillation part of the solution, namely the difference between the solution and its horizontal average. In addition, the oscillation part of the solution is shown to converge exponentially to zero in $H^{1}$ as $t\to \infty$. As a consequence, the solution converges to its horizontal average asymptotically.
We consider a spherical particle levitating above a liquid bath owing to the Leidenfrost effect, where the vapour of either the bath or sphere forms an insulating film whose pressure supports the sphere’s weight. Starting from a reduced formulation based on a lubrication-type approximation, we use matched asymptotics to describe the morphology of the vapour film assuming that the sphere is small relative to the capillary length (small Bond number) and that the densities of the bath and sphere are comparable. We find that this regime is comprised of two formally infinite sequences of distinguished limits which meet at an accumulation point, the limits being defined by the smallness of an intrinsic evaporation number relative to the Bond number. These sequences of limits reveal a surprisingly intricate evolution of the film morphology with increasing sphere size. Initially, the vapour film transitions from a featureless morphology, where the thickness profile is parabolic, to a neck–bubble morphology, which consists of a uniform pressure bubble bounded by a narrow and much thinner annular neck. Gravity effects then become important in the bubble leading to sequential formation of increasingly smaller neck–bubble pairs near the symmetry axis. This process terminates when the pairs closest to the symmetry axis become indistinguishable and merge. Subsequently, the inner section of that merger transitions into a uniform-thickness film that expands radially, gradually squishing increasingly larger neck–bubble pairs into a region of localised oscillations sandwiched between the uniform film and what remains of the bubble whose radial extent is presently comparable to the uniform film; the neck–bubble pairs farther from the axis remain essentially intact. Ultimately, the uniform film gobbles up the largest outermost bubble, whereby the morphology simplifies to a uniform film bounded by localised oscillations. Overall, the asymptotic analysis describes the continuous evolution of the vapour film from a neck–bubble morphology typical of a Leidenfrost drop levitating above a flat solid substrate to a uniform-film morphology which resembles that in the case of a large liquid drop levitating above a liquid bath.
Taking the consideration of two-dimensional stochastic Navier–Stokes equations with multiplicative Lévy noises, where the noises intensities are related to the viscosity, a large deviation principle is established by using the weak convergence method skillfully, when the viscosity converges to 0. Due to the appearance of the jumps, it is difficult to close the energy estimates and obtain the desired convergence. Hence, one cannot simply use the weak convergence approach. To overcome the difficulty, one introduces special norms for new arguments and more careful analysis.
In this article, we give a comprehensive characterization of $L^1$-summability for the Navier-Stokes flows in the half space, which is a long-standing problem. The main difficulties are that $L^q-L^r$ estimates for the Stokes flow don't work in this end-point case: $q=r=1$; the projection operator $P: L^1\longrightarrow L^1_\sigma$ is not bounded any more; useful information on the pressure function is missing, which arises in the net force exerted by the fluid on the noncompact boundary. In order to achieve our aims, by making full use of the special structure of the half space, we decompose the pressure function into two parts. Then the knotty problem of handling the pressure term can be transformed into establishing a crucial and new weighted $L^1$-estimate, which plays a fundamental role. In addition, we overcome the unboundedness of the projection $P$ by solving an elliptic problem with homogeneous Neumann boundary condition.
In this paper, we study a dissipative systems modelling electrohydrodynamics in incompressible viscous fluids. The system consists of the Navier–Stokes equations coupled with a classical Poisson–Nernst–Planck equations. In the three-dimensional case, we establish a global regularity criteria in terms of the middle eigenvalue of the strain tensor in the framework of the anisotropic Lorentz spaces for local smooth solution. The proof relies on the identity for entropy growth introduced by Miller in the Arch. Ration. Mech. Anal. [16].
In this study, we continue our study of the Cauchy problem associated with the Brinkman equations [see (1.1) and (1.2) below] which model fluid flow in certain types of porous media. Here, we will consider the flow in the upper half-space
under the assumption that the plane $z=0$ is impenetrable to the fluid. This means that we will have to introduce boundary conditions that must be attached to the Brinkman equations. We study local and global well-posedness in appropriate Sobolev spaces introduced below, using Kato's theory for quasilinear equations, parabolic regularization and a comparison principle for the solutions of the problem.
Existence of non-negative weak solutions is shown for a full curvature thin-film model of a liquid thin film flowing down a vertical fibre. The proof is based on the application of a priori estimates derived for energy-entropy functionals. Long-time behaviour of these weak solutions is analysed and, under some additional constraints for the model parameters and initial values, convergence towards a travelling wave solution is obtained. Numerical studies of energy minimisers and travelling waves are presented to illustrate analytical results.
The classical model for studying one-phase Hele-Shaw flows is based on a highly nonlinear moving boundary problem with the fluid velocity related to pressure gradients via a Darcy-type law. In a standard configuration with the Hele-Shaw cell made up of two flat stationary plates, the pressure is harmonic. Therefore, conformal mapping techniques and boundary integral methods can be readily applied to study the key interfacial dynamics, including the Saffman–Taylor instability and viscous fingering patterns. As well as providing a brief review of these key issues, we present a flexible numerical scheme for studying both the standard and nonstandard Hele-Shaw flows. Our method consists of using a modified finite-difference stencil in conjunction with the level-set method to solve the governing equation for pressure on complicated domains and track the location of the moving boundary. Simulations show that our method is capable of reproducing the distinctive morphological features of the Saffman–Taylor instability on a uniform computational grid. By making straightforward adjustments, we show how our scheme can easily be adapted to solve for a wide variety of nonstandard configurations, including cases where the gap between the plates is linearly tapered, the plates are separated in time, and the entire Hele-Shaw cell is rotated at a given angular velocity.
We show local higher integrability of derivative of a suitable weak solution to the surface growth model, provided a scale-invariant quantity is locally bounded. If additionally our scale-invariant quantity is small, we prove local smoothness of solutions.
We study the two-phase Stokes flow driven by surface tension with two fluids of equal viscosity, separated by an asymptotically flat interface with graph geometry. The flow is assumed to be two-dimensional with the fluids filling the entire space. We prove well-posedness and parabolic smoothing in Sobolev spaces up to critical regularity. The main technical tools are an analysis of nonlinear singular integral operators arising from the hydrodynamic single-layer potential and abstract results on nonlinear parabolic evolution equations.
We deal with an initial boundary value problem of nonhomogeneous Boussinesq equations for magnetohydrodynamics convection in two-dimensional domains. We prove that there is a unique global strong solution. Moreover, we show that the temperature converges exponentially to zero in H1 as time goes to infinity. In particular, the initial data can be arbitrarily large and vacuum is allowed. Our analysis relies on energy method and a lemma of Desjardins (Arch. Rational Mech. Anal. 137:135–158, 1997).
We consider the inviscid limit for the two-dimensional Navier–Stokes equations in the class of integrable and bounded vorticity fields. It is expected that the difference between the Navier–Stokes and Euler velocity fields vanishes in $L^2$ with an order proportional to the square root of the viscosity constant $\nu $. Here, we provide an order $ (\nu /|\log \nu | )^{\frac 12\exp (-Ct)}$ bound, which slightly improves upon earlier results by Chemin.
If a body enters a viscous-inviscid fluid layer near a wall, then significant effects can be felt from the presence of incident vorticity, viscous forces and nonlinear forces. The focus here is on the response in the outer edge of such a wall layer. Nonlinear two-dimensional unsteady behaviour is examined through modelling, computation and analysis applied for a thin body travelling streamwise upstream or downstream or staying still relative to the wall. The wall layer with its balance between inviscid and viscous effects interacts freely with the body movement, causing relatively high magnitudes of pressure on top of the body and nonlinear responses in the gap between the body and the wall. The study finds explicit solutions for the motion of the body, separation of the flow arising near the wall and possible instabilities occurring over the length scale of any short body.
In lubrication problems, which concern thin film flow, cavitation has been considered as a fundamental element to correctly describe the characteristics of lubricated mechanisms. Here, the well-posedness of a cavitation model that can explain the interaction between viscous effects and micro-bubbles of gas is studied. This cavitation model consists of a coupled problem between the compressible Reynolds partial differential equation (PDE) (that describes the flow) and the Rayleigh–Plesset ordinary differential equation (that describes micro-bubbles evolution). A simplified form without bubbles convection is studied here. This coupled model seems never to be studied before from its mathematical aspects. Local times existence results are proved and stability theorems are obtained based on the continuity of the spectrum for bounded linear operators. Numerical results are presented to illustrate these theoretical results.
Steady two-dimensional fluid flow over an obstacle is solved using complex variable methods. We consider the cases of rectangular obstacles, such as large boulders, submerged in a potential flow. These may arise in geophysics, marine and civil engineering. Our models are applicable to initiation of motion that may result in subsequent transport. The local flow depends on the obstacle shape, slowing down in confining corners and speeding up in expanding corners. The flow generates hydrodynamic forces, drag and lift, and their associated moments, which differ around each face. Our model replaces the need for ill-defined drag and lift coefficients with geometry-dependent functions. We predict smaller flow velocities to initiate motion. We show how a joint-bound boulder can be transported against gravity, and analyse the influence of a wake region behind an isolated boulder.