We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend work of Berdinsky and Khoussainov [‘Cayley automatic representations of wreath products’, International Journal of Foundations of Computer Science27(2) (2016), 147–159] to show that being Cayley automatic is closed under taking the restricted wreath product with a virtually infinite cyclic group. This adds to the list of known examples of Cayley automatic groups.
We present a polynomial-time Markov chain Monte Carlo algorithm for estimating the partition function of the antiferromagnetic Ising model on any line graph. The analysis of the algorithm exploits the ‘winding’ technology devised by McQuillan [CoRR abs/1301.2880 (2013)] and developed by Huang, Lu and Zhang [Proc. 27th Symp. on Disc. Algorithms (SODA16), 514–527]. We show that exact computation of the partition function is #P-hard, even for line graphs, indicating that an approximation algorithm is the best that can be expected. We also show that Glauber dynamics for the Ising model is rapidly mixing on line graphs, an example being the kagome lattice.
A theorem of Brudno says that the Kolmogorov–Sinai entropy of an ergodic subshift over
$\mathbb {N}$
equals the asymptotic Kolmogorov complexity of almost every word in the subshift. The purpose of this paper is to extend this result to subshifts over computable groups that admit computable regular symmetric Følner monotilings, which we introduce in this work. For every
$d \in \mathbb {N}$
, the groups
$\mathbb {Z}^d$
and
$\mathsf{UT}_{d+1}(\mathbb {Z})$
admit computable regular symmetric Følner monotilings for which the required computing algorithms are provided.
Drift analysis is one of the state-of-the-art techniques for the runtime analysis of randomized search heuristics (RSHs) such as evolutionary algorithms (EAs), simulated annealing, etc. The vast majority of existing drift theorems yield bounds on the expected value of the hitting time for a target state, for example the set of optimal solutions, without making additional statements on the distribution of this time. We address this lack by providing a general drift theorem that includes bounds on the upper and lower tail of the hitting time distribution. The new tail bounds are applied to prove very precise sharp-concentration results on the running time of a simple EA on standard benchmark problems, including the class of general linear functions. On all these problems, the probability of deviating by an r-factor in lower-order terms of the expected time decreases exponentially with r. The usefulness of the theorem outside the theory of RSHs is demonstrated by deriving tail bounds on the number of cycles in random permutations. All these results handle a position-dependent (variable) drift that was not covered by previous drift theorems with tail bounds. Finally, user-friendly specializations of the general drift theorem are given.
A directed space is a topological space $X$ together with a subspace $\vec {P}(X)\subset X^I$ of directed paths on $X$. A symmetry of a directed space should therefore respect both the topology of the underlying space and the topology of the associated spaces $\vec {P}(X)_-^+$ of directed paths between a source ($-$) and a target ($+$)—up to homotopy. If it is, moreover, homotopic to the identity map—in a directed sense—such a symmetry will be called an inessential d-map, and the paper explores the algebra and topology of inessential d-maps. Comparing two d-spaces $X$ and $Y$ ‘up to symmetry’ yields the notion of a directed homotopy equivalence between them. Under appropriate conditions, all directed homotopy equivalences are shown to satisfy a 2-out-of-3 property. Our notion of directed homotopy equivalence does not agree completely with the one defined in Goubault (2017, arxiv:1709:05702v2) and Goubault, Farber and Sagnier (2020, J. Appl. Comput. Topol. 4, 11–27); the deviation is motivated by examples. Nevertheless, directed topological complexity, introduced in Goubault, Farber and Sagnier (2020) is shown to be invariant under our notion of directed homotopy equivalence. Finally, we show that directed homotopy equivalences result in isomorphisms on the pair component categories of directed spaces introduced in Goubault, Farber and Sagnier (2020).
In the past four decades, the notion of quantum polynomial-time computability has been mathematically modeled by quantum Turing machines as well as quantum circuits. This paper seeks the third model, which is a quantum analogue of the schematic (inductive or constructive) definition of (primitive) recursive functions. For quantum functions mapping finite-dimensional Hilbert spaces to themselves, we present such a schematic definition, composed of a small set of initial quantum functions and a few construction rules that dictate how to build a new quantum function from the existing ones. We prove that our schematic definition precisely characterizes all functions that can be computable with high success probabilities on well-formed quantum Turing machines in polynomial time, or equivalently uniform families of polynomial-size quantum circuits. Our new, schematic definition is quite simple and intuitive and, more importantly, it avoids the cumbersome introduction of the well-formedness condition imposed on a quantum Turing machine model as well as of the uniformity condition necessary for a quantum circuit model. Our new approach can further open a door to the descriptional complexity of quantum functions, to the theory of higher-type quantum functionals, to the development of new first-order theories for quantum computing, and to the designing of programming languages for real-life quantum computer
State spaces are, in the most general sense, sets of entities that contain information. Examples include states of dynamical systems, processes of observations, or possible worlds. We use domain theory to describe the structure of positive and negative information in state spaces. We present examples ranging from the space of trajectories of a dynamical system, over Dunn’s aboutness interpretation of fde, to the space of open sets of a spectral space. We show that these information structures induce so-called hype models which were recently developed by Leitgeb (2019). Conversely, we prove a representation theorem: roughly, hype models can be represented as induced by an information structure. Thus, the well-behaved logic hype is a sound and complete logic for reasoning about information in state spaces.
As application of this framework, we investigate information fusion. We motivate two kinds of fusion. We define a groundedness and a separation property that allow a hype model to be closed under the two kinds of fusion. This involves a Dedekind–MacNeille completion and a fiber-space like construction. The proof-techniques come from pointless topology and universal algebra.
The proofs of Gödel (1931), Rosser (1936), Kleene (first 1936 and second 1950), Chaitin (1970), and Boolos (1989) for the first incompleteness theorem are compared with each other, especially from the viewpoint of the second incompleteness theorem. It is shown that Gödel’s (first incompleteness theorem) and Kleene’s first theorems are equivalent with the second incompleteness theorem, Rosser’s and Kleene’s second theorems do deliver the second incompleteness theorem, and Boolos’ theorem is derived from the second incompleteness theorem in the standard way. It is also shown that none of Rosser’s, Kleene’s second, or Boolos’ theorems is equivalent with the second incompleteness theorem, and Chaitin’s incompleteness theorem neither delivers nor is derived from the second incompleteness theorem. We compare (the strength of) these six proofs with one another.
In this paper we investigate the computational complexity of deciding if the variety generated by a given finite idempotent algebra satisfies a special type of Maltsev condition that can be specified using a certain kind of finite labelled path. This class of Maltsev conditions includes several well known conditions, such as congruence permutability and having a sequence of n Jónsson terms, for some given n. We show that for such “path defined” Maltsev conditions, the decision problem is polynomial-time solvable.
We define a new class of shift spaces which contains a number of classes of interest, like Sturmian shifts used in discrete geometry. We show that this class is closed under two natural transformations. The first one is called conjugacy and is obtained by sliding block coding. The second one is called the complete bifix decoding, and typically includes codings by non-overlapping blocks of fixed length.
We prove an essentially sharp
$\tilde \Omega (n/k)$
lower bound on the k-round distributional complexity of the k-step pointer chasing problem under the uniform distribution, when Bob speaks first. This is an improvement over Nisan and Wigderson’s
$\tilde \Omega (n/{k^2})$
lower bound, and essentially matches the randomized lower bound proved by Klauck. The proof is information-theoretic, and a key part of it is using asymmetric triangular discrimination instead of total variation distance; this idea may be useful elsewhere.
There has been substantial interest in estimating the value of a graph parameter, i.e. of a real-valued function defined on the set of finite graphs, by querying a randomly sampled substructure whose size is independent of the size of the input. Graph parameters that may be successfully estimated in this way are said to be testable or estimable, and the sample complexity qz = qz(ε) of an estimable parameter z is the size of a random sample of a graph G required to ensure that the value of z(G) may be estimated within an error of ε with probability at least 2/3. In this paper, for any fixed monotone graph property
$\mathcal{P}= \text{Forb}\!(\mathcal{F}),$
we study the sample complexity of estimating a bounded graph parameter z that, for an input graph G, counts the number of spanning subgraphs of G that satisfy
$\mathcal{P}$
. To improve upon previous upper bounds on the sample complexity, we show that the vertex set of any graph that satisfies a monotone property
$\mathcal{P}$
may be partitioned equitably into a constant number of classes in such a way that the cluster graph induced by the partition is not far from satisfying a natural weighted graph generalization of
$\mathcal{P}$
. Properties for which this holds are said to be recoverable, and the study of recoverable properties may be of independent interest.
We introduce a notion of complexity of diagrams (and, in particular, of objects and morphisms) in an arbitrary category, as well as a notion of complexity of functors between categories equipped with complexity functions. We discuss several examples of this new definition in categories of wide common interest such as finite sets, Boolean functions, topological spaces, vector spaces, semilinear and semialgebraic sets, graded algebras, affine and projective varieties and schemes, and modules over polynomial rings. We show that on one hand categorical complexity recovers in several settings classical notions of nonuniform computational complexity (such as circuit complexity), while on the other hand it has features that make it mathematically more natural. We also postulate that studying functor complexity is the categorical analog of classical questions in complexity theory about separating different complexity classes.
Random constraint satisfaction problems play an important role in computer science and combinatorics. For example, they provide challenging benchmark examples for algorithms, and they have been harnessed in probabilistic constructions of combinatorial structures with peculiar features. In an important contribution (Krzakala et al. 2007, Proc. Nat. Acad. Sci.), physicists made several predictions on the precise location and nature of phase transitions in random constraint satisfaction problems. Specifically, they predicted that their satisfiability thresholds are quite generally preceded by several other thresholds that have a substantial impact both combinatorially and computationally. These include the condensation phase transition, where long-range correlations between variables emerge, and the reconstruction threshold. In this paper we prove these physics predictions for a broad class of random constraint satisfaction problems. Additionally, we obtain contiguity results that have implications for Bayesian inference tasks, a subject that has received a great deal of interest recently (e.g. Banks et al. 2016, Proc. 29th COLT).
For a rumour spreading protocol, the spread time is defined as the first time everyone learns the rumour. We compare the synchronous push&pull rumour spreading protocol with its asynchronous variant, and show that for any n-vertex graph and any starting vertex, the ratio between their expected spread times is bounded by $O({n^{1/3}}{\log ^{2/3}}n)$. This improves the $O(\sqrt n)$ upper bound of Giakkoupis, Nazari and Woelfel (2016). Our bound is tight up to a factor of O(log n), as illustrated by the string of diamonds graph. We also show that if, for a pair α, β of real numbers, there exist infinitely many graphs for which the two spread times are nα and nβ in expectation, then $0 \le \alpha \le 1$ and $\alpha \le \beta \le {1 \over 3} + {2 \over 3} \alpha $; and we show each such pair α, β is achievable.
This paper investigates the computational complexity of deciding if a given finite idempotent algebra has a ternary term operation
$m$
that satisfies the minority equations
$m(y,x,x)\approx m(x,y,x)\approx m(x,x,y)\approx y$
. We show that a common polynomial-time approach to testing for this type of condition will not work in this case and that this decision problem lies in the class NP.
Let r ⩾ 2 be a fixed constant and let $ {\cal H} $ be an r-uniform, D-regular hypergraph on N vertices. Assume further that D → ∞ as N → ∞ and that degrees of pairs of vertices in $ {\cal H} $ are at most L where L = D/( log N)ω(1). We consider the random greedy algorithm for forming a matching in $ {\cal H} $. We choose a matching at random by iteratively choosing edges uniformly at random to be in the matching and deleting all edges that share at least one vertex with a chosen edge before moving on to the next choice. This process terminates when there are no edges remaining in the graph. We show that with high probability the proportion of vertices of $ {\cal H} $ that are not saturated by the final matching is at most (L/D)(1/(2(r−1)))+o(1). This point is a natural barrier in the analysis of the random greedy hypergraph matching process.
Given complex numbers w1,…,wn, we define the weight w(X) of a set X of 0–1 vectors as the sum of $w_1^{x_1} \cdots w_n^{x_n}$ over all vectors (x1,…,xn) in X. We present an algorithm which, for a set X defined by a system of homogeneous linear equations with at most r variables per equation and at most c equations per variable, computes w(X) within relative error ∊ > 0 in (rc)O(lnn-ln∊) time provided $|w_j| \leq \beta (r \sqrt{c})^{-1}$ for an absolute constant β > 0 and all j = 1,…,n. A similar algorithm is constructed for computing the weight of a linear code over ${\mathbb F}_p$. Applications include counting weighted perfect matchings in hypergraphs, counting weighted graph homomorphisms, computing weight enumerators of linear codes with sparse code generating matrices, and computing the partition functions of the ferromagnetic Potts model at low temperatures and of the hard-core model at high fugacity on biregular bipartite graphs.
An abelian processor is an automaton whose output is independent of the order of its inputs. Bond and Levine have proved that a network of abelian processors performs the same computation regardless of processing order (subject only to a halting condition). We prove that any finite abelian processor can be emulated by a network of certain very simple abelian processors, which we call gates. The most fundamental gate is a toppler, which absorbs input particles until their number exceeds some given threshold, at which point it topples, emitting one particle and returning to its initial state. With the exception of an adder gate, which simply combines two streams of particles, each of our gates has only one input wire, which sends letters (‘particles’) from a unary alphabet. Our results can be reformulated in terms of the functions computed by processors, and one consequence is that any increasing function from ℕk to ℕℓ that is the sum of a linear function and a periodic function can be expressed in terms of (possibly nested) sums of floors of quotients by integers.