Skip to main content Accessibility help
  • Print publication year: 2020
  • Online publication date: February 2020

3 - Aerodynamic Theory


This chapter summarises the key aerodynamic theory of horizontal-axis wind turbine rotors. The actuator disc concept leads to the relationships between induced velocity, axial thrust, and power extraction. The theory is extended to multiple streamtubes, which, combined with 2D wing theory, establish the basis of blade-element momentum (BEM) theory. A straightforward mathematical treatment of BEM theory is included, with an iterative procedure suitable for coding. Measurements from a full-scale rotor illustrate the applicability of BEM theory but also its fundamental limitations: the latter are described, and measures are outlined to compensate for them in practical BEM codes. Simple relationships are given for the axial and tangential load distributions on an optimal HAWT blade. The structure of the rotor wake is described, leading into a description of vortex-wake theory, which provides a more physically realistic description of the airflow. Vortex wake codes are described in non-mathematical terms. The chapter includes wake measurements from full-scale wind turbines and small models. Vorticity maps from the latter verify the underlying mathematical model of a helical vortex wake.