Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T19:12:53.831Z Has data issue: false hasContentIssue false

Chapter 7 - White matter dementia

Published online by Cambridge University Press:  05 May 2016

Christopher M. Filley
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharon-Peretz, J, Kliot, D, Tomer, R. Behavioral differences between white matter lacunar dementia and Alzheimer’s Disease: a comparison on the Neuropsychiatric Inventory. Dement Geriatr Gogn Disord 2000; 11: 294298.CrossRefGoogle ScholarPubMed
Albert, ML. Subcortical dementia: historical review and personal view. Neurocase 2005; 11: 243245.CrossRefGoogle ScholarPubMed
Albert, ML, Feldman, RG, Willis, AL. The “subcortical dementia” of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 1974; 37: 121130.CrossRefGoogle Scholar
Alexander, MP, Naeser, MA, Palumbo, CL. Correlations of subcortical CT lesion sites and aphasia profiles. Brain 1987; 110: 961991.CrossRefGoogle ScholarPubMed
Al-Hajri, Z, Del Bigio, MR. Brain damage in a large cohort of solvent abusers. Acta Neuropathol 2010; 119: 435445.CrossRefGoogle Scholar
Al-Hasani, OH, Smith, C. Traumatic white matter injury and toxic leukoencephalopathies. Expert Rev Neurother 2011; 11: 13151324.CrossRefGoogle ScholarPubMed
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. DSM-V. Arlington, VA: American Psychiatric Association, 2013.Google Scholar
Anderson, B, Southern, BD, Powers, RE. Anatomic asymmetries of the posterior superior temporal lobes: a postmortem study. Neuropsychiatry Neuropsychol Behav Neurol 1999; 12: 247254.Google ScholarPubMed
Appelman, AP, Exalto, LG, van der Graaf, Y, et al. White matter lesions and brain atrophy: more than shared risk factors? A systematic review. Cerebrovasc Dis 2009; 28: 227242.CrossRefGoogle ScholarPubMed
Armstrong, CL, Corn, BW, Ruffer, JE, et al. Radiotherapeutic effects on brain function: double dissociation of memory systems. Neuropsychiatry Neuropsychol Behav Neurol 2000; 13: 101111.Google ScholarPubMed
Armstrong, CL, Stern, CH, Corn, BW. Memory performance used to detect radiation effects on cognitive function. Appl Neuropsychol 2001; 8: 129139.CrossRefGoogle Scholar
Arnett, PA, Rao, SM, Bernardin, L, et al. Relationship between frontal lobe lesions and Wisconsin Card Sorting Test performance in patients with multiple sclerosis. Neurology 1994; 44: 420425.CrossRefGoogle ScholarPubMed
Arnett, PA, Rao, SM, Hussain, M, et al. Conduction aphasia in multiple sclerosis: a case report with MRI findings. Neurology 1996; 47: 576578.CrossRefGoogle ScholarPubMed
Babikian, V, Ropper, AH. Binswanger’s disease: a review. Stroke 1987; 18: 212.CrossRefGoogle ScholarPubMed
Banich, MT. The missing link: the role of interhemispheric interaction in attentional processing. Brain Cogn 1998; 36: 128157.CrossRefGoogle ScholarPubMed
Barredo, J, Öztekin, I, Badre, D. Ventral fronto-temporal pathway supporting cognitive control of episodic memory retrieval. Cereb Cortex 2015; 25: 10041019.CrossRefGoogle ScholarPubMed
Bartzokis, G. Brain myelination in prevalent neuropsychiatric developmental disorders: primary and comorbid addiction. Adolesc Psychiatry 2005; 29: 5596.Google ScholarPubMed
Bartzokis, G. Neuroglialpharmacology: white matter pathophysiologies and psychiatric treatments. Front Biosci 2011; 16: 26952733.CrossRefGoogle ScholarPubMed
Bartzokis, G, Lu, PH, Tingus, K, Mendez, MF, et al. Lifespan trajectory of myelin integrity and maximum motor speed. Neurobiol Aging 2010; 31: 15541562.CrossRefGoogle ScholarPubMed
Bendlin, BB, Fitzgerald, ME, Ries, ML, et al. White matter in aging and cognition: a cross-sectional study of microstructure in adults aged eighteen to eighty-three. Dev Neuropsychol 2010; 35: 257277.CrossRefGoogle ScholarPubMed
Bennett, DA, Gilley, DW, Lee, S, Cochran, EJ. White matter changes: neurobehavioral manifestations of Binswanger’s Disease and clinical correlates in Alzheimer’s Disease. Dementia 1994; 5: 148152.Google ScholarPubMed
Bleuler, E. Textbook of psychiatry. (trans. Brill, AA). New York: Macmillan, 1924.Google Scholar
Bonelli, RM, Cummings, JL. Frontal-subcortical dementias. Neurologist 2008; 14: 100107.CrossRefGoogle ScholarPubMed
Boone, KB, Miller, BL, Lesser, IM, et al. Neuropsychological correlates of white-matter lesions in healthy elderly subjects: a threshold effect. Arch Neurol 1992; 49: 549554.CrossRefGoogle ScholarPubMed
Brown, RG, Marsden, CD. “Subcortical dementia”: the neuropsychological evidence. Neuroscience 1988; 25: 363387.CrossRefGoogle ScholarPubMed
Bucur, B, Madden, DJ, Spaniol, J, et al. Age-related slowing of memory retrieval: contributions of perceptual speed and cerebral white matter integrity. Neurobiol Aging 2008; 29: 10701079.CrossRefGoogle ScholarPubMed
Budson, AE, Price, BH. Memory dysfunction. N Engl J Med 2005; 352: 692699.CrossRefGoogle ScholarPubMed
Caine, ED, Bamford, KA, Schiffer, RB, et al. A controlled neuropsychological comparison of Huntington’s disease and multiple sclerosis. Arch Neurol 1986; 43: 249254.CrossRefGoogle ScholarPubMed
Chabriat, H, Joutel, A, Dichgans, M, et al. Cadasil. Lancet Neurol 2009; 8: 643653.CrossRefGoogle ScholarPubMed
Chang, CC, Lee, YC, Chang, WN, et al. Damage of white matter tract correlated with neuropsychological deficits in carbon monoxide intoxication after hyperbaric oxygen therapy. J Neurotrauma 2009; 26: 12631270.CrossRefGoogle ScholarPubMed
Charcot, JM. Lectures on the diseases of the nervous system delivered at La Salpêtrière. London: New Sydenham Society, 1877.Google Scholar
Chiang, MC, Barysheva, M, Shattuck, DW, et al. Genetics of brain fiber architecture and intellectual performance. J Neurosci 2009; 29: 22122224.CrossRefGoogle ScholarPubMed
Coltman, R, Spain, A, Tsenkina, Y, et al. Selective white matter pathology induces a specific impairment in spatial working memory. Neurobiol Aging 2011; 32: 2324. e7e12.CrossRefGoogle ScholarPubMed
Cummings, JL, ed. Subcortical dementia. New York: Oxford University Press, 1990.Google Scholar
Cummings, JL, Benson, DF. Subcortical dementia: review of an emerging concept. Arch Neurol 1984; 41: 874879.CrossRefGoogle ScholarPubMed
Darvesh, S, Freedman, M. Subcortical dementia: a neurobehavioral approach. Brain Cogn 1996; 31: 230249.CrossRefGoogle ScholarPubMed
Daselaar, SM, Iyengar, V, Davis, SW, et al. Less wiring, more firing: low-performing older adults compensate for impaired white matter with greater neural activity. Cereb Cortex 2015; 25: 983990.CrossRefGoogle ScholarPubMed
DeLuca, J, Barbieri-Berger, S, Johnson, SK. The nature of memory acquisition in multiple sclerosis: acquisition versus retrieval. J Clin Exp Neuropsychol 1994; 16: 183189.CrossRefGoogle ScholarPubMed
DeLuca, J, Gaudino, EA, Diamond, BJ, et al. Acquisition and storage deficits in multiple sclerosis. J Clin Exp Neuropsychol 1998; 20: 376390.CrossRefGoogle ScholarPubMed
Demaree, HA, DeLuca, J, Gaudino, EA, Diamond, BJ. Speed of information processing as a key deficit in multiple sclerosis: implications for rehabilitation. J Neurol Neurosurg Psychiatry 1999; 67: 661663.CrossRefGoogle ScholarPubMed
Derix, MMA. Neuropsychological differentiation of dementia syndromes. Lisse: Swets and Zeitlinger, 1994.Google Scholar
Doody, RS, Massman, PJ, Mawad, M, Nance, M. Cognitive consequences of subcortical magnetic resonance imaging changes in Alzheimer’s Disease: comparison to small vessel ischemic vascular dementia. Neuropsychiatry Neuropsychol Behav Neurol 1998; 11: 191199.Google Scholar
Drebing, CE, Moore, LH, Cummings, JL, et al. Patterns of neuropsychological performance among forms of subcortical dementia. Neuropsychiatry Neuropsychol Behav Neurol 1994; 7: 5766.Google Scholar
Fein, G, Van Dyke, C, Davenport, L, et al. Preservation of normal cognitive functioning in elderly subjects with extensive white-matter lesions of long duration. Arch Gen Psychiatry 1990; 47: 220223.CrossRefGoogle ScholarPubMed
Feinstein, A. The clinical neuropsychiatry of multiple sclerosis. 2nd ed. Cambridge: Cambridge University Press, 2007.CrossRefGoogle Scholar
Filley, CM. The behavioral neurology of cerebral white matter. Neurology 1998; 50: 15351540.CrossRefGoogle ScholarPubMed
Filley, CM. White matter: organization and functional relevance. Neuropsychol Rev 2010; 20: 158173.CrossRefGoogle ScholarPubMed
Filley, CM. Neurobehavioral anatomy. 3rd ed. Boulder: University Press of Colorado, 2011.Google Scholar
Filley, CM. The behavioral neurology of white matter. 2nd ed. New York: Oxford University Press, 2012.CrossRefGoogle ScholarPubMed
Filley, CM, Franklin, GM, Heaton, RK, Rosenberg, NL. White matter dementia: clinical disorders and implications. Neuropsychiatry Neuropsychol Behav Neurol 1988; 1: 239254.Google Scholar
Filley, CM, Heaton, RK, Nelson, LM, Burks, JS, Franklin, GM. A comparison of dementia in Alzheimer’s Disease and multiple sclerosis. Arch Neurol 1989; 46: 157161.CrossRefGoogle ScholarPubMed
Filley, CM, Heaton, RK, Rosenberg, NL. White matter dementia in chronic toluene abuse. Neurology 1990; 40: 532534.CrossRefGoogle ScholarPubMed
Filley, CM, Gross, KF. Psychosis with cerebral white matter disease. Neuropsychiatry Neuropsychol Behav Neurol 1992; 5: 119125.Google Scholar
Filley, CM, Cullum, CM. Attention and vigilance function in normal aging. Appl Neuropsychol 1994; 1: 2932.CrossRefGoogle ScholarPubMed
Filley, CM, Thompson, LL, Sze, C-I, et al. White matter dementia in CADASIL. J Neurol Sci 1999; 163: 163167.CrossRefGoogle ScholarPubMed
Filley, CM, Kleinschmidt-DeMasters, BK. Toxic leukoencephalopathy. N Engl J Med 2001; 345: 425432.CrossRefGoogle ScholarPubMed
Filley, CM, Halliday, W, Kleinschmidt-DeMasters, BK. The effects of toluene on the central nervous system. J Neuropathol Exp Neurol 2004; 63: 112.CrossRefGoogle ScholarPubMed
Filley, CM, Kozora, E, Brown, MS, et al. White matter microstructure and cognition in non-neuropsychiatric systemic lupus erythematosus. Cogn Behav Neurol 2009; 22: 3844.CrossRefGoogle ScholarPubMed
Fornazzari, L, Pollanen, MS, Myers, V, Wolf, A. Solvent abuse–related toluene leukoencephalopathy. J Clin Forensic Med 2003; 10: 9395.CrossRefGoogle ScholarPubMed
Franklin, GM, Nelson, LM, Filley, CM, Heaton, RK. Cognitive loss in multiple sclerosis: case reports and review of the literature. Arch Neurol 1989; 46: 162167.CrossRefGoogle ScholarPubMed
Gabrieli, JD, Stebbins, GT, Singh, J, et al. Intact mirror-tracing and impaired rotary-pursuit skill learning in patients with Huntington’s disease: evidence for dissociable memory systems in skill learning. Neuropsychology 1997; 11: 272281.CrossRefGoogle ScholarPubMed
Gallassi, R, Morreale, A, Montagna, P, et al. Binswanger’s disease and normal-pressure hydrocephalus: clinical and neuropsychological comparison. Arch Neurol 1991; 48: 11561159.CrossRefGoogle ScholarPubMed
Gennarelli, TA, Thibault, LA, Adams, JH, et al. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 1982; 12: 564574.CrossRefGoogle ScholarPubMed
Geschwind, N. Disconnexion syndromes in animals and man. Brain 1965; 88: 237294, 585644.CrossRefGoogle ScholarPubMed
Giedd, JN, Castellanos, FX, Casey, BJ, et al. Quantitative morphology of the corpus callosum in attention deficit hyperactivity disorder. Am J Psychiatry 1994; 151: 665669.Google ScholarPubMed
Graff-Radford, NR, Rizzo, M. Neglect in a patient with multiple sclerosis. Eur Neurol 1987; 26: 100103.CrossRefGoogle Scholar
Grafman, J, Weingartner, H, Newhouse, PA, et al. Implicit learning in patients with Alzheimer’s disease. Pharmacopsychiatry 1990; 23: 94101.CrossRefGoogle ScholarPubMed
Grigsby, J, Cornish, K, Hocking, D, et al. The cognitive neuropsychological phenotype of carriers of the FMR1 premutation. J Neurodev Disord 2014; 6: 28.CrossRefGoogle ScholarPubMed
Haász, J, Westlye, ET, Fjær, S, et al. General fluid-type intelligence is related to indices of white matter structure in middle-aged and old adults. Neuroimage 2013; 83: 372383.CrossRefGoogle ScholarPubMed
Haroutunian, V, Katsel, P, Roussos, P, et al. Myelination, oligodendrocytes, and serious mental illness. Glia 2014; 62: 18561877.CrossRefGoogle ScholarPubMed
Harris, JG, Filley, CM. CADASIL: neuropsychological findings in three generations of an affected family. J Int Neuropsychol Soc 2001; 7: 768774.CrossRefGoogle ScholarPubMed
Hauser, SL, Oksenberg, JR. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 2006; 52: 6176.CrossRefGoogle ScholarPubMed
Heaton, RK, Nelson, LM, Thompson, DS, et al. Neuropsychological findings in relapsing-remitting and chronic-progressive multiple sclerosis. J Consul Clin Psychol 1985; 53: 103110.CrossRefGoogle ScholarPubMed
Hippolyte, L, Battistella, G, Perrin, AG, et al. Investigation of memory, executive functions, and anatomic correlates in asymptomatic FMR1 premutation carriers. Neurobiol Aging 2014; 35: 19391946.CrossRefGoogle ScholarPubMed
Hormes, JT, Filley, CM, Rosenberg, NL. Neurologic sequelae of chronic solvent vapor abuse. Neurology 1986; 36: 698702.CrossRefGoogle ScholarPubMed
Howard, MO, Bowen, SE, Garland, EL, et al. Inhalant use and inhalant use disorders in the United States. Addict Sci Clin Pract 2011; 6: 1831.Google ScholarPubMed
Huber, SJ, Shuttleworth, EC, Paulson, GW, et al. Cortical vs subcortical dementia: neuropsychological differences. Arch Neurol 1986; 43: 392394.CrossRefGoogle ScholarPubMed
Hyde, TM, Ziegler, JC, Weinberger, DR. Psychiatric disturbances in metachromatic leukodystrophy: insights into the neurobiology of psychosis. Arch Neurol 1992; 49: 401406.CrossRefGoogle ScholarPubMed
Iddon, JL, Pickard, JD, Cross, JJL, et al. Specific patterns of cognitive impairment in patients with idiopathic normal pressure hydrocephalus and Alzheimer’s disease: a pilot study. J Neurol Neurosurg Psychiatry 1999; 67: 723732.CrossRefGoogle ScholarPubMed
Inatomi, Y, Yonehara, T, Hashimoto, Y, Hirano, T, Uchino, M. Correlation between ventricular enlargement and white matter changes. J Neurol Sci 2008; 269: 1217.CrossRefGoogle ScholarPubMed
Jellinger, KA. Neuropathology of movement disorders. Neurosurg Clin N Am 1998; 9: 237362.CrossRefGoogle ScholarPubMed
Jones, RD, Tranel, D. Preservation of procedural memory in HIV-positive patients with subcortical dementia. J Clin Exp Neuropsychol 1991; 13: 74.Google Scholar
Karlborg, B, Skak Madsen, K, Vestergaard, M, et al. Sustained attention is associated with right superior longitudinal fasciculus and superior parietal white matter microstructure in children. Hum Brain Mapp 2013; 34: 32163232.Google Scholar
Kloppenborg, RP, Nederkoorn, PJ, Geerlings, MI, van den Berg, E. Presence and progression of white matter hyperintensities and cognition: a meta-analysis. Neurology 2014; 82: 21272138.CrossRefGoogle ScholarPubMed
Knopman, D, Nissen, MJ. Procedural learning is impaired in Huntington’s disease: evidence from the serial reaction time task. Neuropsychologia 1991; 29: 245254.CrossRefGoogle ScholarPubMed
Kochunov, P, Coyle, T, Lancaster, J, et al. Processing speed is correlated with cerebral health markers in the frontal lobes as quantified by neuroimaging. Neuroimage 2010; 49: 11901199.CrossRefGoogle ScholarPubMed
Kornfeld, M, Moser, AB, Moser, HW, et al. Solvent vapor abuse leukoencephalopathy: comparison to adrenoleukodystrophy. J Neuropathol Exp Neurol 1994; 53: 389398.CrossRefGoogle ScholarPubMed
Krupp, L, Elkins, LE. Fatigue and declines in cognitive functioning in multiple sclerosis. Neurology 2000; 55: 934939.CrossRefGoogle ScholarPubMed
Kujala, P, Portin, R, Ruutianen, J. Language functions in incipient cognitive decline in multiple sclerosis. J Neurol Sci 1996; 141: 7986.CrossRefGoogle ScholarPubMed
Lacour, A, De Seze, J, Revenco, E, et al. Acute aphasia in multiple sclerosis: a multicenter study of 22 patients. Neurology 2004; 62: 974977.CrossRefGoogle ScholarPubMed
Lafosse, J, Reed, BR, Mungas, D, et al. Fluency and memory differences between ischemic vascular dementia and Alzheimer’s disease. Neuropsychology 1997; 11: 514522.CrossRefGoogle ScholarPubMed
Lafosse, JM, Corboy, JR, Leehey, MA, et al. MS vs. HD: can white matter and subcortical gray matter pathology be distinguished neuropsychologically? J Clin Exp Neuropsychol 2007; 29: 142154.CrossRefGoogle ScholarPubMed
Lafosse, JM, Mitchell, SM, Corboy, JR, Filley, CM. The nature of verbal memory impairment in multiple sclerosis: a list-learning and meta-analytic study. J Int Neuropsychol Soc 2013; 19: 9951008.CrossRefGoogle ScholarPubMed
Laule, C, Kozlowski, P, Leung, E, et al. Myelin water imaging of multiple sclerosis at 7 T: correlations with histopathology. Neuroimage 2008; 40: 15751580.CrossRefGoogle ScholarPubMed
Lee, JH, Kim, SH, Kim, GH, et al. Identification of pure subcortical vascular dementia using 11C-Pittsburgh compound B. Neurology 2011; 77: 1825.CrossRefGoogle ScholarPubMed
Libon, DJ, Bogdanoff, B, Cloud, BS, et al. Declarative and procedural learning, quantitative measures of the hippocampus, and subcortical white alterations in Alzheimer’s disease and ischaemic vascular dementia. J Clin Exp Neuropsychol 1998; 20: 3041.CrossRefGoogle ScholarPubMed
Libon, DJ, Price, CC, Giovannetti, T, et al. Linking MRI hyperintensities with patterns of neuropsychological impairment: evidence for a threshold effect. Stroke 2008; 39: 806813.CrossRefGoogle ScholarPubMed
Litvan, I, Grafman, J, Vendrell, P, Martinez, JM. Slowed information processing in multiple sclerosis. Arch Neurol 1988; 45: 281285.CrossRefGoogle ScholarPubMed
Lucchinetti, CF, Popescu, BF, Bunyan, RF, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 2011; 365: 21882197.CrossRefGoogle ScholarPubMed
Lunven, M, Thiebaut de Schotten, M, Bourlon, C, et al. White matter lesional predictors of chronic visual neglect: a longitudinal study. Brain 2015; 138: 746760.CrossRefGoogle ScholarPubMed
Markowitsch, HJ. Which brain regions are critically involved in the retrieval of old episodic memory? Brain Res Rev 1995; 21: 117127.CrossRefGoogle ScholarPubMed
Mataró, M, Junqué, C, Poca, MA, Sahuquillo, J. Neuropsychological findings in congenital and acquired childhood hydrocephalus. Neuropsychol Rev 2001; 11: 169178.CrossRefGoogle ScholarPubMed
Mayeux, R, Stern, Y, Rosen, J, Benson, F. Is “subcortical dementia” a recognizable clinical entity? Ann Neurol 1983; 14: 278283.CrossRefGoogle Scholar
McHugh, PR, Folstein, MF. Psychiatric syndromes of Huntington’s chorea: a clinical and phenomenologic study. In: Benson, DF, Blumer, D, eds. Psychiatric aspects of neurologic disease. Vol. 1. New York: Grune and Stratton, 1975: 267285.Google Scholar
McKenzie, IA, Ohayon, D, Li, H, et al. Motor skill learning requires active central myelination. Science 2014; 346: 318322.CrossRefGoogle ScholarPubMed
McKhann, G, Drachman, D, Folstein, M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34: 939944.CrossRefGoogle ScholarPubMed
McKinney, AM, Kieffer, SA, Paylor, RT, et al. Acute toxic leukoencephalopathy: potential for reversibility clinically and on MRI with diffusion-weighted and FLAIR imaging. AJR 2009; 193: 192206.CrossRefGoogle ScholarPubMed
Mendez, MF, Perryman, KM, Bronstein, YL. White matter dementias: neurobehavioral aspects and etiology. J Neuropsychiatry Clin Neurosci 2000; 12: 133.Google Scholar
Mendez, MF, Cummings, JL. Dementia, a clinical approach. 3rd ed. Philadelphia: Butterworth Heinemann, 2003.Google Scholar
Merriam, AE, Hegarty, A, Miller, A. A proposed etiology for psychotic symptoms in white matter dementia. Neuropsychiatry Neuropsychol Behav Neurol 1989; 2: 225228.Google Scholar
Merriam, AE, Hegarty, AM, Miller, A. The mental disabilities of metachromatic leukodystrophy: implications concerning the differentiation of cortical, subcortical, and white matter dementias. Neuropsychiatry Neuropsychol Behav Neurol 1990; 3: 217225.Google Scholar
Mesulam, M-M. Attentional networks, confusional states, and neglect syndromes. In: Mesulam, M-M, ed. Principles of behavioral and cognitive neurology. 2nd ed. New York: Oxford University Press, 2000: 174256.CrossRefGoogle Scholar
Minden, SL, Schiffer, RB. Affective disorders in multiple sclerosis: review and recommendations for clinical research. Arch Neurol 1990; 47: 98104.CrossRefGoogle ScholarPubMed
Miyamoto, N, Maki, T, Pham, LD, et al. Oxidative stress interferes with white matter renewal after prolonged cerebral hypoperfusion in mice. Stroke 2013; 44: 35163521.CrossRefGoogle ScholarPubMed
Moll, NM, Rietsch, AM, Ransohoff, AJ, et al. Cortical demyelination in PML and MS: similarities and differences. Neurology 2008; 70: 336343.CrossRefGoogle ScholarPubMed
Mouzon, BC, Bachmeier, C, Ferro, A, et al. Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann Neurol 2014; 75: 241254.CrossRefGoogle Scholar
Murray, ME, Senjem, ML, Petersen, RC, et al. Functional impact of white matter hyperintensities in cognitively normal elderly subjects. Arch Neurol 2010; 67: 13791385.CrossRefGoogle ScholarPubMed
Navia, BA, Jordan, BD, Price, RW. The AIDS dementia complex: I. Clinical features. Ann Neurol 1986; 19: 517524.CrossRefGoogle ScholarPubMed
Nielsen, AS, Kinkel, RP, Madigan, N, et al. Contribution of cortical lesion subtypes at 7T MRI to physical and cognitive performance in MS. Neurology 2013; 81: 641649.CrossRefGoogle ScholarPubMed
Nieuwenhuys, R. The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Struct Funct 2013; 218: 303352.CrossRefGoogle ScholarPubMed
Ozturk, V, Idiman, E, Sengun, IS, Yuksel, Z. Multiple sclerosis and parkinsonism: a case report. Funct Neurol 2002; 17: 145147.Google ScholarPubMed
Papagno, C, Miracapillo, C, Casarotti, A, et al. What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval. Brain 2011; 134: 405414.CrossRefGoogle ScholarPubMed
Parvizi, J. Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn Sci 2009; 13: 354359.CrossRefGoogle ScholarPubMed
Penke, L, Muñoz Maniega, S, Murray, C, et al. A general factor of brain white matter integrity predicts information processing speed in healthy older people. J Neurosci 2010; 30: 75697574.CrossRefGoogle ScholarPubMed
Price, CC, Jefferson, AL, Merino, JG, Heilman, KM, Libon, DJ. Subcortical vascular dementia: integrating neuropsychological and neuroradiologic data. Neurology 2005; 65: 376382.CrossRefGoogle ScholarPubMed
Price, CC, Mitchell, SM, Brumback, B, et al. MRI-leukoaraiosis thresholds and the phenotypic expression of dementia. Neurology 2012; 79: 734740.CrossRefGoogle ScholarPubMed
Prins, ND, Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol 2015; 11: 157165.CrossRefGoogle ScholarPubMed
Rao, SM. White matter dementias. In: Parks, RW, Zec, RF, Wilson, RS, eds. Neuropsychology of Alzheimer’s disease and other dementias. New York: Oxford University Press, 1993: 438456.Google Scholar
Rao, SM. White matter disease and dementia. Brain Cogn 1996; 31: 250268.CrossRefGoogle ScholarPubMed
Rao, SM, Hammeke, TA, McQuillen, MP, et al. Memory disturbance in chronic-progressive multiple sclerosis. Arch Neurol 1984; 41: 625631.CrossRefGoogle ScholarPubMed
Rao, SM, Bernardin, L, Leo, GJ, et al. Cerebral disconnection in multiple sclerosis: relationship to atrophy of the corpus callosum. Arch Neurol 1989b; 46: 918920.CrossRefGoogle ScholarPubMed
Rao, SM, Leo, GJ, Bernardin, L, Unverzagt, F. Cognitive dysfunction in multiple sclerosis: I. Frequency, patterns, and prediction. Neurology 1991; 41: 685691.CrossRefGoogle ScholarPubMed
Rao, SM, Grafman, J, DiGiulio, D, et al. Memory dysfunction in multiple sclerosis: its relation to working memory, semantic encoding, and implicit learning. Neuropsychology 1993; 7: 364374.CrossRefGoogle Scholar
Reed, BR, Eberling, JL, Mungas, D, et al. Memory failure has different mechanisms in subcortical stroke and Alzheimer’s Disease. Ann Neurol 2000; 48: 275284.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Riva, D, Bova, SM, Bruzzone, MG. Neuropsychological testing may predict early progression of asymptomatic adrenoleukodystrophy. Neurology 2000; 54: 16511655.CrossRefGoogle ScholarPubMed
Román, GC, Tatemichi, TK, Erkinjuntti, T, et al. Vascular dementia: diagnostic criteria for research studies; report of the NINDS-AIREN International Workshop. Neurology 1993; 43: 250260.CrossRefGoogle ScholarPubMed
Ropper, AH, Samuels, MA, Klein, JP. Adams and Victor’s principles of neurology. 10th ed. New York: McGraw-Hill, 2014.Google Scholar
Rosenberg, NL, Spitz, MC, Filley, CM, et al. Central nervous system effects of chronic toluene abuse – clinical, brainstem evoked response and magnetic resonance imaging studies. Neurotoxicol Teratol 1988a; 10: 489495.CrossRefGoogle ScholarPubMed
Rosenberg, NK, Kleinschmidt-DeMasters, BK, Davis, KA, et al. Toluene abuse causes diffuse central nervous system white matter changes. Ann Neurol 1988b; 23: 611614.CrossRefGoogle ScholarPubMed
Rosenbloom, MJ, Sassoon, SA, Pfefferbaum, A, Sullivan, EV. Contribution of regional white matter integrity to visuospatial construction accuracy, organizational strategy, and memory for a complex figure in abstinent alcoholics. Brain Imaging Behav 2009; 3: 379390.CrossRefGoogle ScholarPubMed
Rueckert, LM, Sorenson, L, Levy, J. Callosal efficiency is related to sustained attention. Neuropsychologia 1994; 32: 159173.CrossRefGoogle ScholarPubMed
Rueckert, L, Grafman, J. Sustained attention deficits in patients with right frontal lesions. Neuropsychologia 1996; 34: 953963.CrossRefGoogle ScholarPubMed
Rueckert, L, Baboorian, D, Stavropoulos, K, Yasutake, C. Individual differences in callosal efficiency: correlation with attention. Brain Cogn 1999; 41: 390410.CrossRefGoogle ScholarPubMed
Sadovnick, AD, Eisen, K, Ebers, GC, Paty, DW. Cause of death in patients attending multiple sclerosis clinics. Neurology 1991; 41: 11931196.CrossRefGoogle ScholarPubMed
Samuelsson, H, Jensen, C, Ekholm, S, et al. Anatomical and neurological correlates of acute and chronic visuospatial neglect following right hemisphere stroke. Cortex 1997; 33: 271285.CrossRefGoogle ScholarPubMed
Saunders, JBDM, O’Malley, CD. The illustrations from the works of Andreas Vesalius of Brussels. New York: Dover, 1973.Google Scholar
Schmahmann, JD, Pandya, DN. Fiber pathways of the brain. New York: Oxford University Press, 2006.CrossRefGoogle Scholar
Schmahmann, JD, Smith, EE, Eichler, FS, Filley, CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci 2008; 1142: 266309.CrossRefGoogle ScholarPubMed
Schwid, R, Tyler, CM, Scheid, EA, et al. Cognitive fatigue during a test requiring sustained attention: a pilot study. Mult Scler 2003; 9: 503508.CrossRefGoogle ScholarPubMed
Semrud-Clikeman, M, Steingard, RJ, Filipek, P, et al. Using MRI to examine brain–behavior relationships in males with attention deficit disorder with hyperactivity. J Am Acad Child Adolesc Psychiatry 2000; 39: 477484.CrossRefGoogle ScholarPubMed
Sepulcre, J, Masdeu, JC, Sastre-Garriga, J, et al. Mapping the brain pathways of declarative verbal memory: evidence from white matter lesions in the living human brain. Neuroimage 2008; 42: 12371243.CrossRefGoogle ScholarPubMed
Shapiro, EG, Lockman, LA, Knopman, D, Krivit, W. Characteristics of the dementia in late-onset metachromatic leukodystrophy. Neurology 1994; 44: 662665.CrossRefGoogle ScholarPubMed
Shibata, M, Yamasaki, N, Miyakawa, T, et al. Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke 2007; 38: 28262832.CrossRefGoogle Scholar
Smith, EE, O’Donnell, M, Dagenais, G, et al. Early cerebral small vessel disease and brain volume, cognition, and gait. Ann Neurol 2015; 77: 251261.CrossRefGoogle ScholarPubMed
Sohn, YH, Jeong, Y, Kim, HS, et al. The brain lesion responsible for parkinsonism after carbon monoxide poisoning. Arch Neurol 2000; 57: 12141218.CrossRefGoogle ScholarPubMed
Spikman, JM, van Zomeren, AH, Deelman, BG. Deficits of attention after closed-head injury: slowness only? J Clin Exp Neuropsychol 1996; 18: 755767.CrossRefGoogle ScholarPubMed
Staekenborg, SS, de Waal, H, Admiraal-Behloul, F, et al. Neurological signs in relation to white matter hyperintensity volumes in memory clinic patients. Dement Geriatr Cogn Disord 2010; 29: 301308.CrossRefGoogle ScholarPubMed
Stern, Y. Cognitive reserve. Neuropsychologia 2009; 47: 20152028.CrossRefGoogle ScholarPubMed
Sumowski, JF, Wylie, GR, Chiaravalloti, N, DeLuca, J. Intellectual enrichment lessens the effect of brain atrophy on learning and memory in multiple sclerosis. Neurology 2010; 74: 19421945.CrossRefGoogle ScholarPubMed
Swirsky-Sacchetti, T, Field, HL, Mitchell, DR, et al. The sensitivity of the Mini-Mental State Exam in the white matter dementia of multiple sclerosis. J Clin Psychol 1992; 48: 779786.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Takahashi, M, Iwamoto, K, Fukatsu, H, et al. White matter microstructure of the cingulum and cerebellar peduncle is related to sustained attention and working memory: a diffusion tensor imaging study. Neurosci Lett 2010; 477: 7276.CrossRefGoogle ScholarPubMed
Tanridag, O, Kirshner, HS. Magnetic resonance imaging and CT scanning in neurobehavioral syndromes. Psychosomatics 1987; 28: 517528.CrossRefGoogle ScholarPubMed
Tierney, MC, Snow, WG, Reid, DW, et al. Psychometric differentiation of dementia: replication and extension of the findings of Storandt and coworkers. Arch Neurol 1987; 44: 720722.CrossRefGoogle ScholarPubMed
Timmerman, ME, Brouwer, WH. Slow information processing after very severe closed head injury: impaired access to declarative knowledge and intact application and acquisition of procedural knowledge. Neuropsychologia 1999; 37: 467478.CrossRefGoogle ScholarPubMed
Tranchant, C, Bhatia, KP, Marsden, CD. Movement disorders in multiple sclerosis. Mov Disord 1995; 10: 418423.CrossRefGoogle ScholarPubMed
Tuladhar, AM, Reid, AT, Shumskaya, E, et al. Relationship between white matter hyperintensities, cortical thickness, and cognition. Stroke 2015; 46: 425432.CrossRefGoogle ScholarPubMed
Tuch, DS, Salat, DH, Wisco, JJ, et al. Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc Natl Acad Sci 2005; 102: 1221212217.CrossRefGoogle ScholarPubMed
Turken, A, Whitfield-Gabrieli, S, Bammer, R, et al. Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. Neuroimage 2008; 42: 10321044.CrossRefGoogle ScholarPubMed
von Stockert, FG. Subcorficale demenz. Arch Psychiatry 1932; 97: 77100.Google Scholar
Walterfang, M, Velakoulis, D, Whitford, TJ, Pantelis, C. Understanding aberrant white matter development in schizophrenia: an avenue for therapy? Expert Rev Neurother 2011; 11: 971987.CrossRefGoogle ScholarPubMed
Weinstein, M, Silverstein, ML, Nader, T, Turnbull, A. Sustained attention and related perceptuomotor functions. Percept Mot Skills 1999; 89: 387388.CrossRefGoogle ScholarPubMed
White, DA, Taylor, MJ, Butters, N, et al. Memory for verbal information in individuals with HIV-associated dementia complex; HNRC Group. J Clin Exp Neuropsychol 1997; 19: 357366.CrossRefGoogle ScholarPubMed
Whitehouse, PJ. The concept of subcortical and cortical dementia: another look. Ann Neurol 1986; 19: 16.CrossRefGoogle ScholarPubMed
Yamanouchi, N, Okada, S, Kodama, K, et al. Effects of MRI abnormalities on WAIS-R performance in solvent abusers. Acta Neurol Scand 1997; 96: 3439.CrossRefGoogle ScholarPubMed
Yoon, CW, Shin, JS, Kim, HJ, et al. Cognitive deficits of pure subcortical vascular dementia vs. Alzheimer disease: PiB-PET-based study. Neurology 2013; 80: 569573.CrossRefGoogle ScholarPubMed
Yücel, M, Takagi, M, Walterfang, M, Lubman, DI. Toluene misuse and long-term harms: a systematic review of the neuropsychological and neuroimaging literature. Neurosci Biobehav Rev 2008; 32: 910926.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×