Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T20:22:20.869Z Has data issue: false hasContentIssue false

Chapter 12 - White matter and cognition: research perspectives

Published online by Cambridge University Press:  05 May 2016

Christopher M. Filley
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
White Matter Dementia , pp. 153 - 161
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajilore, O, Zhan, L, Gadelkarim, J, et al. Constructing the resting state structural connectome. Front Neuroinform 2013; 7: 30.CrossRefGoogle ScholarPubMed
Arfanakis, K, Fleischman, DA, Grisot, G, et al. Systemic inflammation in non-demented elderly human subjects: brain microstructure and cognition. PLoS One 2013; 8: e73107.CrossRefGoogle ScholarPubMed
Baltan, S, Carmichael, ST, Matute, C, Xi, G, Zhang, JH, eds. White matter injury in stroke and CNS disease. New York: Springer, 2014.CrossRefGoogle Scholar
Bartolomeo, P, Thiebaut de Schotten, M, Chica, AB. Brain networks of visuospatial attention and their disruption in visual neglect. Front Hum Neurosci 2012; 6: 110.CrossRefGoogle ScholarPubMed
Bettcher, BM, Kramer, JH. Longitudinal inflammation, cognitive decline, and Alzheimer’s disease: a mini-review. Clin Pharmacol Ther 2014; 96: 464469.CrossRefGoogle ScholarPubMed
Bettcher, BM, Watson, CL, Walsh, CM, et al. Interleukin-6, age, and corpus callosum integrity. PLoS One 2014; 9: e106521.CrossRefGoogle ScholarPubMed
Bettcher, BM, Yaffe, K, Boudreau, RM, et al. Declines in inflammation predict greater white matter microstructure in older adults. Neurobiol Aging 2015; 36: 948954.CrossRefGoogle ScholarPubMed
Bonilha, L, Nesland, T, Rorden, C, et al. Mapping remote subcortical ramifications of injury after ischemic strokes. Behav Neurol 2014; 2014: 215380.CrossRefGoogle ScholarPubMed
Broca, P. Remarques sur la siège de la faculté du langage articule, suives d’une observation d’aphémie. Bulletin Societé Anatomique 1861; 36: 333337, 398407.Google Scholar
Butt, AM, Fern, RF, Matute, C. Neurotransmitter signaling in white matter. Glia 2014; 62: 17621779.CrossRefGoogle ScholarPubMed
Carrera, E, Tononi, G. Diaschisis: past, present, future. Brain 2014; 137: 24082422.CrossRefGoogle ScholarPubMed
Catani, M. Diffusion tensor magnetic resonance imaging tractography in cognitive disorders. Curr Opin Neurol 2006; 19: 599606.CrossRefGoogle ScholarPubMed
Catani, M, Dell’acqua, F, Bizzi, A, et al. Beyond cortical localization in clinico-anatomical correlation. Cortex 2012a; 48: 12621287.CrossRefGoogle ScholarPubMed
Catani, M, Dell’acqua, F, Vergani, F, et al. Short frontal lobe connections of the human brain. Cortex 2012b; 48: 273291.CrossRefGoogle ScholarPubMed
Catani, M, Mesulam, M-M, Jakobsen, E, et al. A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 2013a; 136: 26192628.CrossRefGoogle ScholarPubMed
Catani, M, Dell’acqua, F, Thiebaut de Schotten, M. A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev 2013b; 37: 17241737.CrossRefGoogle ScholarPubMed
Damoiseaux, JS, Greicius, MD. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 2009; 213: 525533.CrossRefGoogle Scholar
De Martino, F, Moerel, M, Xu, J, et al. High-resolution mapping of myeloarchitecture in vivo: localization of auditory areas in the human brain. Cereb Cortex 2014 Jul 3. [Epub ahead of print]CrossRefGoogle Scholar
DiMartino, A, Fair, DA, Kelly, C, et al. Unraveling the miswired connectome: a developmental perspective. Neuron 2014; 83: 13351353.CrossRefGoogle Scholar
Feeney, DM, Baron, J-C. Diaschisis. Stroke 1986; 17: 817830.CrossRefGoogle ScholarPubMed
Fields, RD. Neuroscience: change in the brain’s white matter. Science 2010; 330: 768769.CrossRefGoogle ScholarPubMed
Filippi, M, Charil, A, Rovaris, M, et al. Insights from magnetic resonance imaging. Handb Clin Neurol 2014; 122: 115149.CrossRefGoogle ScholarPubMed
Filley, CM. The behavioural neurology of white matter. 2nd ed. New York: Oxford University Press, 2012.CrossRefGoogle Scholar
Freedman, M, Alexander, MP, Naeser, MA. Anatomic basis of transcortical motor aphasia. Neurology 1984; 34: 409417.CrossRefGoogle ScholarPubMed
Geschwind, N. Disconnexion syndromes in animals and man. Brain 1965; 88: 237294, 585644.CrossRefGoogle ScholarPubMed
Gianaros, PJ, Marsland, AL, Sheu, LK, et al. Inflammatory pathways link socioeconomic inequalities to white matter architecture. Cereb Cortex 2013; 23: 20582071.CrossRefGoogle ScholarPubMed
Glasser, MF, Goyal, MS, Preuss, TM, et al. Trends and properties of human cerebral cortex: correlations with cortical myelin content. Neuroimage 2014; 93 Pt2: 165175.CrossRefGoogle ScholarPubMed
Gold, BT, Powell, DK, Xuan, L, et al. Age-related slowing of task switching is associated with decreased integrity of frontoparietal white matter. Neurobiol Aging 2010; 31: 512522.CrossRefGoogle ScholarPubMed
Gorelick, PB. Role of inflammation in cognitive impairment: results of observational epidemiological studies and clinical trials. Ann N Y Acad Sci 2010; 1207: 155162.CrossRefGoogle Scholar
Gravel, C, Sasseville, R, Hawkes, R. Maturation of the corpus callosum of the rat: II. Influence of thyroid hormones on the number and maturation of axons. J Comp Neurol 1990; 291: 147161.CrossRefGoogle ScholarPubMed
Jang, SH, Kwon, HG. Perspectives on the neural connectivity of the fornix in the human brain. Neural Regen Res 2014; 9: 14341436.Google ScholarPubMed
Kim, HJ, Moon, WJ, Han, SH. Differential cholinergic pathway involvement in Alzheimer’s disease and subcortical ischemic vascular dementia. J Alzheimers Dis 2013; 35: 129136.CrossRefGoogle ScholarPubMed
Kochunov, P, Glahn, DC, Lancaster, J, et al. Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. Neuroimage 2011; 58: 4149.CrossRefGoogle ScholarPubMed
Lee, CK, Weindruch, R, Prolla, TA. Gene-expression profile of the ageing brain in mice. Nat Genet 2000; 25: 294297.CrossRefGoogle ScholarPubMed
Mesulam, M-M. Large-scale neurocognitive networks and distributed processing for attention, memory, and language. Ann Neurol 1990; 28: 597613.CrossRefGoogle Scholar
Mesulam, M. The evolving landscape of human cortical connectivity: facts and inferences. Neuroimage 2012; 62: 21822189.CrossRefGoogle ScholarPubMed
Mesulam, M, Siddique, T, Cohen, B. Cholinergic denervation in a pure multi-infarct state: observations on CADASIL. Neurology 2003; 60: 11831185.CrossRefGoogle Scholar
Nieuwenhuys, R. The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Struct Funct 2013; 218: 303352.CrossRefGoogle ScholarPubMed
Ownby, RL. Neuroinflammation and cognitive aging. Curr Psychiatry Rep 2010; 12: 3945.CrossRefGoogle ScholarPubMed
Ozdogmus, O, Cavdar, S, Ersoy, Y, et al. A preliminary study, using electron and light-microscopic methods, of axon numbers in the fornix in autopsies of patients with temporal lobe epilepsy. Anat Sci Int 2009; 84: 26.CrossRefGoogle ScholarPubMed
Parks, EL, Madden, DJ. Brain connectivity and visual attention. Brain Connect 2013; 3: 317338.CrossRefGoogle ScholarPubMed
Parvizi, J, Damasio, A. Consciousness and the brainstem. Cognition 2001; 79: 135160.CrossRefGoogle ScholarPubMed
Raichle, ME, MacLeod, AM, Snyder, AZ, et al. A default mode of brain function. Proc Natl Acad Sci 2001: 98: 676682.CrossRefGoogle ScholarPubMed
Reeves, TM, Smith, TL, Williamson, JC, Phillips, LL. Unmyelinated axons show selective rostrocaudal pathology in the corpus callosum after traumatic brain injury. J Neuropathol Exp Neurol 2012; 71: 198210.CrossRefGoogle ScholarPubMed
Román, GC. Cholinergic dysfunction in vascular dementia. Curr Psychiatry Rep 2005; 7: 1826.CrossRefGoogle ScholarPubMed
Sankowski, R, Mader, S, Valdés-Ferrer, SI. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci 2015; 9: 28.CrossRefGoogle ScholarPubMed
Schmahmann, JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol 1991; 48: 11781187.CrossRefGoogle ScholarPubMed
Schmahmann, JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004; 16: 367378.CrossRefGoogle ScholarPubMed
Schmahmann, JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 2010; 20: 236260.CrossRefGoogle ScholarPubMed
Schmahmann, JD, Sherman, JC. The cerebellar cognitive affective syndrome. Brain 1998; 121: 561579.CrossRefGoogle ScholarPubMed
Schmahmann, JD, Pandya, DN. Fiber pathways of the brain. Oxford: Oxford University Press, 2006.CrossRefGoogle Scholar
Seeley, WW, Menon, V, Schatzberg, AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007; 27: 23492356.CrossRefGoogle ScholarPubMed
Selden, NR, Gitelman, DR, Salamon-Murayama, N, et al. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 1998; 121: 22492257.CrossRefGoogle ScholarPubMed
Solari, SV, Stoner, R. Cognitive consilience: primate non-primary neuroanatomical circuits underlying cognition. Front Neuroanat 2011; 5: 65.Google ScholarPubMed
Sporns, O. The human connectome: a complex network. Ann N Y Acad Sci 2011; 1224: 109125.CrossRefGoogle ScholarPubMed
Stenset, V, Grambaite, R, Reinvang, I, et al. Diaschisis after thalamic stroke: a comparison of metabolic and structural changes in a patient with amnesic syndrome. Acta Neurol Scand Suppl 2007; 187: 6871.CrossRefGoogle Scholar
Stoodley, CJ, Schmahmann, JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 2009; 44: 489501.CrossRefGoogle ScholarPubMed
Stoodley, CJ, Valera, EM, Schmahmann, JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 2012; 59: 15601570.CrossRefGoogle ScholarPubMed
Swartz, RH, Sahlas, DJ, Black, SE. Strategic involvement of cholinergic pathways and executive dysfunction: does location of white matter signal hyperintensities matter? J Stroke Cerebrovasc Dis 2003; 12: 2936.CrossRefGoogle ScholarPubMed
Tavor, I, Yablonski, M, Mezer, A, et al. Separate parts of occipito-temporal white matter fibers are associated with recognition of faces and places. Neuroimage 2014; 86: 123130.CrossRefGoogle ScholarPubMed
Teipel, SJ, Meindl, T, Grinberg, L, et al. Novel MRI techniques in the assessment of dementia. Eur J Nucl Med Mol Imaging 2008; 35 Suppl 1: S58S69.CrossRefGoogle ScholarPubMed
Toga, AW, Clark, KA, Thompson, PM, et al. Mapping the human connectome. Neurosurgery 2012; 71: 15.CrossRefGoogle ScholarPubMed
Van Essen, DC, Smith, SM, Barch, DM, et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 2013; 80: 6279.CrossRefGoogle ScholarPubMed
von Monakow, C. Diaschisis. (1914 article translated by Harris, G). In: Pribram, KH, ed. Brain and behavior: I. Mood states and mind. Baltimore: Penguin Press, 1969: 2736.Google Scholar
Wernicke, K. Der aphasiche symptomencomplex. Breslau: Cohn and Weigert, 1874.Google Scholar
Yaffe, K. Metabolic syndrome and cognitive disorders: is the sum greater than its parts? Alzheimer Dis Assoc Disord 2007; 21: 167171.CrossRefGoogle ScholarPubMed
Young, RM. Mind, brain, and adaptation in the nineteeth century. London: Oxford University Press, 1970.Google Scholar
Zhang, K, Sejnowski, TJ. A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci 2000; 97: 56215626.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×