Skip to main content Accessibility help
  • Print publication year: 2001
  • Online publication date: February 2010

3 - Energy Methods for the Euler and the Navier–Stokes Equations


In the first two chapters of this book we described many properties of the Euler and the Navier–Stokes equations, including some exact solutions. A natural question to ask is the following: Given a general smooth initial velocity field v(x, 0), does there exist a solution to either the Euler or the Navier–Stokes equation on some time interval [0, T)? Can the solution be continued for all time? Is it unique? If the solution has a finite-time singularity, so that it cannot be continued smoothly past some critical time, in what way does the solution becomes singular? This chapter and Chap. 4 introduce two different methods for proving existence and uniqueness theory for smooth solutions to the Euler and the Navier–Stokes equations. In this chapter we introduce classical energy methods to study both the Euler and the Navier–Stokes equations. The starting point for these methods is the physical fact that the kinetic energy of a solution of the homogeneous Navier–Stokes equations decreases in time in the absence of external forcing. The next chapter introduces a particle method for proving existence and uniqueness of solutions to the inviscid Euler equation. As is true for all partial differential evolution equations, the challenge in proving that the evolution is well posed lies in understanding the effect of the unbounded spatial differential operators. The particle method exploits the fact that, without viscosity, the vorticity is transported (and stretched in three dimensions) along particle paths.