Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T17:00:37.948Z Has data issue: false hasContentIssue false

Chapter 3 - Anticipating volcanic eruptions

Published online by Cambridge University Press:  14 November 2009

Joan Martí
Affiliation:
Institute of Earth Sciences “Jaume Almera” Consejo Superior de Investigaciones Cientificas, Lluis Solé Sabaris s/n, 08028 Barcelona 39, Spain
Arnau Folch
Affiliation:
Institute of Earth Sciences “Jaume Almera” Consejo Superior de Investigaciones Cientificas, Lluis Solé Sabaris s/n, 08028 Barcelona, Spain
Joan Marti
Affiliation:
Institut de Ciències de la Terra 'Jaume Almera', Barcelona
Gerald G. J. Ernst
Affiliation:
Universiteit Gent, Belgium
Get access

Summary

Introduction

Volcanic activity involves movements of fluids, magma, and vapor, inside the volcano and its feeding systems. These movements will cause external signals, eruption precursors, which may alert us to the proximity of a volcanic event. Such precursory signals can be detected by an adequate volcano monitoring program. Monitoring techniques include a range of geophysical and geochemical techniques, encompassing seismic, ground-deformation, gravity, and magnetic observations, gas monitoring, and remote sensing. Successful forecasting of volcanic events depends on the precision of the surveillance network in detecting any changes in the volcano's current behavior. To interpret the geochemical and geophysical precursors correctly, however, it is also important to understand the physics of the volcanic processes involved in volcanic eruptions. Detailed knowledge of the volcano, its internal structure and style, and potential triggering mechanisms of past eruptions must be combined with adequate monitoring if future volcanic eruptions are to be anticipated and their effects mitigated (Fig. 3.1). In summary, prediction of volcanic activity has the aims of determining when and where a future eruption will occur, and how it will proceed. However, it is also important to understand why the next eruption will occur.

Volcanic eruptions are caused mainly by processes occurring in magma chambers at depth. During the lifetime of the volcano the corresponding magma chamber may change in size and shape.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alidibirov, M. and Dingwell, D. B. 1996. Magma fragmentation by rapid decompression. Nature, 380, 146–148CrossRefGoogle Scholar
Bagdassarov, N., Dingwell, D., and Wilding, M. 1996. Rhyolite magma degassing: an experimental study of melt vesiculation. Bulletin of Volcanology, 57, 587–601CrossRefGoogle Scholar
Blake, S. 1981. Volcanism and the dynamics of open magma chambers. Nature, 289, 783–785CrossRefGoogle Scholar
Blake, S. 1984. Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger. Journal of Geophysical Research, 89, 8237–8244CrossRefGoogle Scholar
Blake, S. and Fink, J. H. 1987. The dynamics of magma withdrawal from a density stratified dyke. Earth and Planetary Sciences Letters, 85, 516–524CrossRefGoogle Scholar
Bonadonna, C., Ernst, G. G. J., and Sparks, R. S. J. 1998. Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. Journal of Volcanology and Geothermal Research, 81, 173–187CrossRefGoogle Scholar
Bonafede, M. 1991. Hot fluid migration: an efficient source of ground deformation: application to the 1982–1984 crisis at Plegrean Fields, Italy. Journal of Volcanology and Geothermal Research, 48, 187–198CrossRefGoogle Scholar
Bower, S. M. and Woods, A. W. 1997. Control of magma volatile content and chamber depth on the mass erupted during explosive volcanic eruptions. Journal of Geophysical Research, 102, 10273–10290CrossRefGoogle Scholar
Bryan, S. E., Cas, R. A. F., and Martí, J. 2000. The 0.57 Ma plinian eruption of the Granadilla Member, Tenerife (Canary Islands): an example of complexity in eruption dynamics and evolution. Journal of Volcanology and Geothermal Research, 103, 209–238CrossRefGoogle Scholar
Campbell, I. H. and Turner, J. S. 1986. The influence of viscosity on fountains in magma chambers. Journal of Petrology, 27, 1–30CrossRefGoogle Scholar
Carey, S. N., Sigurdsson, H., and Sparks, R. S. J. 1988. Experimental studies of particle-laden plumes. Journal of Geophysical Research, 93, 314–328CrossRefGoogle Scholar
Carmichael, I. S. E., Turner, F. J., and Verhoogen, J. 1974. Igneous Petrology. New York, McGraw-HillGoogle Scholar
Carroll, M. C. and Holloway, J. R. (eds.) 1994. Volatiles in Magmas, Reviews in Mineralogy no. 30. Washington, DC, Mineralogical Society of AmericaGoogle Scholar
Cas, R. A. F. and Wright, J. V. 1987. Volcanic Successions Modern and Ancient. London, Allen and UnwinCrossRefGoogle Scholar
Condomines, M., Hémond, C. H., and Allègre, C. J. 1988. U–Th–Ra radioactive disequilibria and magmatic processes. Earth and Planetary Science Letters, 90, 243–262CrossRefGoogle Scholar
Condomines, M., Tanguy, J. C., and Michaud, V. 1995. Magma dynamics at Mt. Etna: constraints from U–Th–Ra–Pb radioactive disequilibria and Sr isotopes in historical lavas. Earth and Planetary Science Letters, 132, 25–41CrossRefGoogle Scholar
Dingwell, D. 1998. Magma degassing and fragmentation. In , A. Freund and , M. Resi (eds.) Modelling Physical Processes of Exposive Volcanic Eruptions. Amsterdam, The Netherlands, Elsevier, pp. 1–25Google Scholar
Dobran, F. 1987. Nonequilibrium modeling of two-phase critical flows in tubes. Journal of Heat Transfer, 109, 731–738CrossRefGoogle Scholar
Dobran, F. 1992. Nonequilibrium flow in volcanic conduits and application to the eruptions of Mt. St. Helens on May 18, 1980 and Vesuvius in AD 79. Journal of Volcanology and Geothermal Research, 49, 285–311CrossRefGoogle Scholar
Dobran, F., Neri, A., and Macedonio, G. 1993. Numerical simulation of collapsing volcanic columns. Journal of Geophysical Research, 98, 4231–4259CrossRefGoogle Scholar
Donadieu, F. and Merle, O. 1998. Experiments on the indentation process during cryptodome intrusions: new insights into Mount St. Helens deformation. Geology, 26, 79–822.3.CO;2>CrossRefGoogle Scholar
Dvorak, J. J. and Dzurisin, D. 1997. Volcano geodesy: the search for magma reservoirs and the formation of eruptive vents. Reviews of Geophysics, 35, 343–384CrossRefGoogle Scholar
Ernst, G. G. J., Davis, J. P., and Sparks, R. S. J. 1994. Bifurcation of volcanic plumes in a crosswind. Bulletin of Volcanology, 56, 159–169CrossRefGoogle Scholar
Ernst, G. G. J., Sparks, R. S. S., Carey, S. N., et al. 1996. Sedimentation from turbulent jets and plumes. Journal of Geophysical Research, 101, 5575–5590CrossRefGoogle Scholar
Fisher, R. V. and Schmincke, H. U. 1984. Pyroclastic Rocks. Berlin, Germany, Springer-VerlagCrossRefGoogle Scholar
Folch, A. and Martí, J. 1998. The generation of overpressure in felsic magma chambers by replenishment. Earth and Planetary Science Letters, 163, 301–314CrossRefGoogle Scholar
Folch, A., Martí, J., Codina, R., et al. 1998. A numerical model for temporal variations during explosive central vent eruptions. Journal of Geophysical Research, 103, 20883–20899CrossRefGoogle Scholar
Freund, A. and Rosi, M. (eds.) 1998. Developments in Volcanology, vol. 4, From Magma to Tephra. Amsterdam, The Netherlands, ElsevierGoogle Scholar
Freund, A. and Tait, S. R. 1986. The entrainment of high-viscosity magma into low-viscosity magma in eruption conduits. Bulletin of Volcanology, 48, 325–339CrossRefGoogle Scholar
Gilbert, G. J. and Sparks, R. S. J. (eds.) 1998. The Physics of Explosive Volcanic Eruptions, Geological Society Special Publication no. 145. London, The Geological SocietyGoogle Scholar
Gilberti, G. and Wilson, L. 1990. The influence of geometry on the ascent of magma in open fissures. Bulletin of Volcanology, 52, 515–521CrossRefGoogle Scholar
Gomez-Fernandez, F., 1998. Development of a volcanic risk assessment information system for the prevention and management of volcanic crisis: stating the fundamentals. In , C. A. Brebbia and , P. Pascolo (eds.) GIS Technologies and their Environmental Applications. Computational Mechanics Publications, pp. 111–120
Gomez-Fernandez, F. and Macedonio, G. 1998. Integration of physical simulation models in the frame of a GIS for the development of a volcanic assessment information system. In , C. A. Brebbia, , J. L. Rubio, and , J. L. Uso (eds.) Risk Analysis. Computational Mechanics Publications, pp. 265–274
Gudmundsson, A. 1988. Effect of tensile stress concentration around magma chambers on intrusion and extrusion frequencies. Journal of Volcanology and Geothermal Research, 35, 179–194CrossRefGoogle Scholar
Gudmundsson, A. 1998. Magma chambers modelled as cavities explain the formation of rift zone central volcanoes and the eruption and intrusion statistics. Journal of Geophysical Research, 103, 7401–7412CrossRefGoogle Scholar
Gudmundsson, A., Martí, J., and Turon, E. 1997. Stress fields generating ring faults in volcanoes. Geophysical Research Letters, 24, 1559–1562CrossRefGoogle Scholar
Gudmundsson, A., Marinoni, L., and Martí, J. 1999. Dyke injection and arrest: implications for volcanic hazards. Journal of Volcanology and Geothermal Research, 88, 1–13CrossRefGoogle Scholar
Hall, A. 1996. Igneous Petrology. Chichester, UK, John WileyGoogle Scholar
Huppert, H. E. and Sparks, R. S. J. 1980. The fluid dynamics of basaltic magma chambers replenished by influx of hot, dense ultrabasic magma. Contribitions to Mineralogy and Petrology, 75, 279–289CrossRefGoogle Scholar
Huppert, H. E. and Sparks, R. S. J. 1988. The fluid dynamics of crustal melting by injection of basaltic sills. Transactions of the Royal Society of Edinburgh, 79, 237–243CrossRefGoogle Scholar
Huppert, H. E., Turner, J. S., and Sparks, R. S. J. 1982a. Replenished magma chambers: effects of compositional zonation and input rates. Earth and Planetary Science Letters, 57, 345–357CrossRefGoogle Scholar
Huppert, H. E., Turner, J. S., and Sparks, R. S. J 1982b. Effects of volatiles on mixing in calc-alkaline magma systems. Nature, 297, 554–557CrossRefGoogle Scholar
Huppert, H. E., Turner, J. S., and Sparks, R. S. J 1983. Laboratory investigations of viscous effects in replenished magma chambers. Earth and Planetary Science Letters, 65, 377–381CrossRefGoogle Scholar
Hurwitz, S. and Navon, O. 1994. Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature and water content. Earth and Planetary Science Letters, 122, 267–280CrossRefGoogle Scholar
Komuro, H., Fujita, Y., and Kodama, K. 1984. Numerical and experimental models on the formation mechanism of collapse basins during the Green Tuff orogenesis of Japan. Bulletin of Volcanology, 47, 649–666CrossRefGoogle Scholar
Lacasse, S., Karlsdóttir, S., Larsen, G., et al. 2004. Weather radar observations of the Hekla 2000 eruption cloud, Iceland. Bulletin of Volcanology, 66, 457–473CrossRefGoogle Scholar
Lambert, G., Cloarec, M. F., Ardouin, B., et al. 1986. Volcanic emission of radionuclides and magma dynamics. Earth and Planetary Science Letters, 76, 185–192CrossRefGoogle Scholar
Cloarec, M. F. and Marty, B. 1991. Volcanic fluxes from volcanoes. Terra Nova, 3, 17–27CrossRefGoogle Scholar
Cloarec, M. F., Allard, P., Ardouin, B., et al. 1992. Radioactive isotopes and trace elements in gaseous emissions from White Island, New Zeland. Earth and Planetary Science Letters, 108, 19–28CrossRefGoogle Scholar
Lenat, J. F. 1995. Geoelectrical methods in volcano monitoring. In , W. J. McGuire, , C. Kilburn and , J. Murray (eds.) Monitoring Active Volcanoes: Strategies, Procedures and Techniques. London, UCL Press, pp. 248–274Google Scholar
Linde, A. T. and Sacks, I. S. 1998. Triggering of volcanic eruptions. Nature, 395, 888–890CrossRefGoogle Scholar
Lyakhovsky, V., Hurwitz, S., and Navon, O. 1996. Bubble growth in rhyolitic melts, experimental and numerical investigation. Bulletin of Volcanology, 58, 19–32CrossRefGoogle Scholar
Macedonio, G., Dobran, F., and Neri, A. 1994. Erosion processes in volcanic conduits and application to the AD 79 eruption of Vesuvius. Earth and Planetary Science Letters, 121, 137–152CrossRefGoogle Scholar
Mader, H. M. 1998. Conduit flow and fragmentation. In , J. S. Gilbert and , R. S. J. Sparks (eds.) The physics of Explosive Volcanic Eruptions, Geological Society Special Publication no. 145. London, The Geological Society, pp. 51–71Google Scholar
Mader, H. M., Phillips, J. C., and Sparks, R. S. J. 1996. Dynamics of explosive degassing of magma: observations of fragmenting two phase flows. Journal of Geophysical Research, 101, 5547–5560CrossRefGoogle Scholar
Mader, H. M., Zhang, Y., Phillips, J., et al. 1994. Experimental simulations of explosive degassing of magma. Nature, 372, 85–88CrossRefGoogle Scholar
Marsh, B. D. 1989. Magma chambers. Annual Reviews of Earth and Planetary Sciences, 17, 439–474CrossRefGoogle Scholar
Martí, J. 1993. Paleovolcanismo. In , J. Martí and , V. Araña (eds.) La Vulcanología Actual: Nuevas Tendencias. Madrid, Spain, Consejc Superier de Investigaciones Cientificas, pp. 531–578
Martí, J. and Araña, V. (eds.), 1993. La Vulcanología Actual: Nuevas Tendencias. Madrid, Spain, CSICGoogle Scholar
Martí, J., Ablay, G., Redshaw, L. T., et al. 1994. Experimental studies of collapse calderas. Journal of the Geological Society of London, 151, 919–929CrossRefGoogle Scholar
Martí, J., Soriano, C., and Dingwell, D. 1999. Tube pumices: strain markers of a ductile–brittle transition in explosive eruptions. Nature, 402, 650–653CrossRefGoogle Scholar
Martí, J., Folch, A., Neri, A., et al. 2000. Pressure evolution during explosive caldera-forming eruptions. Earth and Planetary Science Letters, 175, 275–287CrossRefGoogle Scholar
McBirney, A. R. 1984. Igneous Petrology. San Francisco, CA, Freeman, Cooper and CoGoogle Scholar
McGuire, W. J., 1995. Monitoring active volcanoes: an introduction. In , W. J. McGuire, , C. Kilburn, and , J. Murray (eds.) Monitoring Active Volcanoes: Strategies, Procedures and Techniques. London, UCL Press, pp. 1–31Google Scholar
McGuire, W. J., Kilburn, C., and Murray, J. (eds.) 1995. Monitoring Active Volcanoes: Strategies, Procedures and Techniques. London, UCL PressGoogle Scholar
Merle, O. and Borgia, A. 1996. Scaled experiments of volcanic spreading. Journal of Geophysical Research, 101, 13805–13818CrossRefGoogle Scholar
Mogi, K. 1958. Relations of the eruptions of various volcanoes and the deformations of the ground surface around them. Bulletin of the Earthquake Research Institute, 36, 99–134Google Scholar
Morey, G. W. 1922. The development of pressure in magmas as a result of crystallization. Journal of the Washington Academy of Science, 12, 219–230Google Scholar
Neri, A. and Macedonio, G. 1996. Physical modelling of collapsing volcanic columns and pyroclastic flows. In , R. Scarpa and , R. I. Tilling (eds.) Monitoring and Mitigation of Volcano Hazards. Berlin, Germany, Springer-Verlag, pp. 389–427
Neri, A., Papale, P., and Macedonio, G. 1998. The role of magma composition and water content in explosive eruptions. II. Pyroclastic dispersion dynamics. Journal of Volcanology and Geothermal Research, 87, 95–115CrossRefGoogle Scholar
Newhall, C. G. and Punongbayan, R. S. 1996. The narrow margin of successful volcanic-risk mitigation. In , R. Scarpa and , R. I. Tilling (eds.) Monitoring and Mitigation of Volcano Hazards. Berlin, Germany, Springer-Verlag, pp. 807–838
Pallister, J. S., Hoblitt, R. P., and Reyes, A. G. 1992. A basalt trigger for the 1991 eruptions of Pinatubo volcano. Nature, 356, 426–428CrossRefGoogle Scholar
Papale, P. 1996. Modelling of magma ascent along conduits: a review. In , F. Barberi and , R. Casale (eds.) The Mitigation of Volcanic Hazards. Luxembourg, Office for Official Publications of the European Communities, pp. 3–40Google Scholar
Papale, P. 1998. Strain-induced magma fragmentation in explosive eruptions. Nature, 397, 425–428CrossRefGoogle Scholar
Papale, P. and Dobran, F. 1993. Modeling of the ascent of magma during the plinian eruption of Vesuvius in AD 79. Journal of Volcanology and Geothermal Research, 58, 101–132CrossRefGoogle Scholar
Papale, P. and Dobran, F. 1994. Magma flow along the volcanic conduit during the Plinian and pyroclastic flow phases of the May 18, 1980, Mount St. Helens eruption. Journal of Geophysical Research, 99, 4355–4374CrossRefGoogle Scholar
Papale, P., Neri, A., and Macedonio, G., 1998. The role of magma composition and water content in explosive eruptions. II. Conduit ascent dynamics. Journal of Volcanology and Geothermal Research, 87, 75–93CrossRefGoogle Scholar
Pennisi, M. and Cloarec, M. F. 1998. Variations of Cl, F, and S in Mount Etna's plume, Italy, between 1992 and 1995. Journal of Geophysical Research, 103, 5061–5066CrossRefGoogle Scholar
Prousevitch, A. A., Shagian, D. L., and Anderson, A. T. 1993. Dynamics of diffusive bubble growth in magmas: isothermal case. Journal of Geophysical Research, 98, 22283–22307CrossRefGoogle Scholar
Rampino, M. R., Self, S., and Stothers, R. B. 1988. Volcanic winters. Annual Reviews of Earth and Planetary Sciences, 16, 73–99CrossRefGoogle Scholar
Riedel, C., Ernst, G. G. J., and Riley, M. 2003. Controls on the growth and geometry of pyroclastic constructs. Journal of Volcanology and Geothermal Research, 127, 121–152CrossRefGoogle Scholar
Roberts, J. L. 1970. The intrusion of magma into brittle rocks. In , G. Newall and , N. Rast (eds.) Mechanism of Igneous Intrusion. Liverpool, UK, Gallery Press, pp. 287–338
Roche, O., Druitt, T. M., and Merle, O. 2000. Experimental study of caldera formation. Journal of Geophysical Research, 105, 395–416CrossRefGoogle Scholar
Rose, W. I., Bluth, G. J. S., and Ernst, G. G. J. 2000. Integrating retrievals of volcanic cloud characteristics from satellite remote sensors: a summary. Philosophical Transactions of the Royal Society of London, Series A, 358, 1585–1606CrossRefGoogle Scholar
Rosi, M. 1996. Quantitative reconstruction of recent volcanic activity: a contribution to forecasting future eruptions. In , R. Scarpa and , R. I. Tilling (eds.) Monitoring and Mitigation of Volcano Hazards. Berlin, Germany, Springer-Verlag, pp. 631–674
Rubin, A. 1995. Propagation of magma filled cracks. Annual Reviews of Earth and Planetary Sciences, 23, 287–336CrossRefGoogle Scholar
Scarpa, R. and Tilling, R. I. (eds.) 1996. Monitoring and Mitigation of Volcano Hazards. Berlin, Germany, Springer-VerlagCrossRefGoogle Scholar
Sigurdsson, H. (ed.) 2000. Encyclopedia of Volcanoes. San Diego, CA, Academic PressGoogle Scholar
Smith, R. L. 1979. Ash flow magmatism. Geological Society of America Special Paper, 180, 5–27CrossRefGoogle Scholar
Smith, R. L. and Bailey, R. A. 1968. Resurgent caulderons. Geological Society of American Memoirs, 116, 613–622CrossRefGoogle Scholar
Snyder, D. and Tait, S. 1995. Replenishment of magma chambers: comparison of fluid-mechanic experiments with field relations. Contributions to Mineralogy and Petrology, 122, 230–240CrossRefGoogle Scholar
Snyder, D. and Tait, S. 1996. Magma mixing by convective entrainment. Nature, 379, 529–531CrossRefGoogle Scholar
Sparks, R. S. J. 1978. The dynamics of bubble formation and growth in magmas, a review and analysis. Journal of Volcanology and Geothermal Research, 3, 1–37CrossRefGoogle Scholar
Sparks, R. S. J. 2003. Forecasting volcanic eruptions. Earth and Planetary Science Letters, 210, 1–15CrossRefGoogle Scholar
Sparks, R. S. J. and Marshall, L. A. 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. Journal of Volcanology and Geothermal Research, 29, 99–124CrossRefGoogle Scholar
Sparks, R. S. J. and Wilson, L. 1976. A model for the formation of ignimbrite by gravitational column collapse. Journal of the Geological Society of London, 132, 441–451CrossRefGoogle Scholar
Sparks, R. S. J., Sigurdsson, H., and Wilson, L. 1977. Magma mixing: a mechanism for triggering acid explosive eruptions. Nature, 267, 315–318CrossRefGoogle Scholar
Sparks, R. S. J., Carey, S. N., and Sigurdsson, H., 1991. Sedimentation from gravity currents generated by turbulent plumes. Sedimentology, 38, 839–856CrossRefGoogle Scholar
Sparks, R. S. J., Bursik, M. I., Carey, S. N., et al. 1997. Volcanic Plumes. New York, John WileyGoogle Scholar
Spera, F. 1984. Some numerical experiments on the withdrawal of magma from crustal reservoirs. Journal of Geophysical Research, 89, 8222–8236CrossRefGoogle Scholar
Spera, F., Yuen, D. A., Greer, J., et al. 1986. Dynamics of magma withdrawal from stratified magma chambers. Geology, 14, 723–7262.0.CO;2>CrossRefGoogle Scholar
Stix, J. and Gaonac'H, H. 2000. Gas, plume and thermal monitoring. In , H. Sigurdsson (ed.) Encyclopedia of Volcanoes. San Diego, CA, Academic Press, pp. 1141–1163Google Scholar
Sturtevant, B., Kanamori, B., and Brodsky, E. E. 1996. Seismic triggering by rectified diffusion in geothermal systems. Journal of Geophysical Research, 101, 25269–25282CrossRefGoogle Scholar
Tait, S., Jaupart, C., and Vergniolle, S. 1989. Pressure, gas content and eruption periodicity of a shallow crystallizing magma chamber. Earth and Planetary Science Letters, 92, 107–123CrossRefGoogle Scholar
Toramaru, A. 1995. Numerical study of nucleation and growth of bubbles in viscous magmas. Journal of Geophysical Research, 100, 1913–1931CrossRefGoogle Scholar
Trial, A. F., Spera, F., Greer, J., et al. 1992. Simulations of magma withdrawal from compositionally zoned bodies. Journal of Geophysical Research, 97, 6713–6733CrossRefGoogle Scholar
Turner, J. S. and Campbell, I. H. 1986. Convection and mixing in magma chambers. Earth Sciences Reviews, 23, 255–352CrossRefGoogle Scholar
Van Der Laat, R. 1996. Ground-deformation methods and results. In , R. Scarpa and , R. I. Tilling (eds.) Monitoring and Mitigation of Volcano Hazards. Berlin, Germany, Springer-Verlag, pp. 147–168
Walker, G. P. L. 1973. Explosive volcanic eruptions: a new classification scheme. Geologisctic Rundschall, 62, 431–446CrossRefGoogle Scholar
Willams, H. and McBirney, A. R. 1979. Volcanology. San Francisco, CA, W. H. FreemanGoogle Scholar
Wilson, C. J. N. 1980. The role of fluidization in the emplacement of pyroclastic flows: an experimental approach. Journal of Volcanology and Geothermal Research, 8, 231–249CrossRefGoogle Scholar
Wilson, C. J. N. 1984. The role of fluidization in the emplacements of pyroclasic flows. II. Experimental results and their interpretation. Journal of Volcanology and Geothermal Research, 20, 55–84CrossRefGoogle Scholar
Wilson, L. 1976. Explosive volcanic eruptions. III. Plinian eruption columns. Geophysical Journal of the Royal Astronomy Society, 45, 543–556CrossRefGoogle Scholar
Wilson, L. and Head, J. W. 1981. Ascent and eruption of basaltic magma on the earth and moon. Journal of Geophysical Research, 86, 2971–3001CrossRefGoogle Scholar
Wilson, L., Sparks, R. S. J., and Walker, G. P. L. 1980. Explosive volcanic eruptions. IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophysical Journal of the Royal Astronomy Society, 63, 117–148CrossRefGoogle Scholar
Wilson, M. 1989. Igneous Petrogenesis: A Global Tectonic Approach. London, Unwin HymanCrossRefGoogle Scholar
Wohletz, K. H. 1986. Explosive magma–water interactions: thermodynamics, explosion mechanisms, and field studies. Bulletin of Volcanology, 48, 245–264CrossRefGoogle Scholar
Wohletz, K. H. and Heiken, G., 1992. Volcanology and Geothermal Energy. Berkeley, CA, University of California PressGoogle Scholar
Wohletz, K. H. and Sheridan, M. F. 1983. Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones. American Journal of Science, 283, 385–413CrossRefGoogle Scholar
Wood, W. J. and Fraser, D. G. 1976. Elementary Thermodynamics for Geologists. Oxford, UK, Oxford University PressGoogle Scholar
Woods, A. W. and Bursik, M. I. 1994. A laboratory study of ash flows. Journal of Geophysical Research, 99, 4375–4394CrossRefGoogle Scholar
Woods, A. W., Bursik, M. I., and Kurvatov, A. V. 1998. The interaction of ash flows with ridges. Bulletin of Volcanology, 60, 38–51CrossRefGoogle Scholar
Zimanowski, B. 1998. Phreatomagmatic explosions. In , A. Freund and , M. Rosi (eds.) Developments in Volcanology, vol. 4, From Magma to Tephra. Amsterdam, The Netherlands, Elsevier, pp. 25–53
Zimanowski, B., Büttner, R., Lorenz, V., et al. 1997. Fragmentation of basaltic melt in the course of explosive volcanism. Journal of Geophysical Research, 102, 803–814CrossRefGoogle Scholar
Zimanowski, B., Fröhlich, G., and Lorenz, V. 1991. Quantitative experiments on phreatomagmatic explosions. Journal of Volcanology and Geothermal Research, 48: 341–358CrossRefGoogle Scholar
Zlotnicki, J. 1995. Geomagnetic surveying methods. In , W. J. McGuire, , C. Kilburn, and , J. Murray (eds.) Monitoring Active Volcanoes. London, UCL Press, pp. 275–300Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Anticipating volcanic eruptions
    • By Joan Martí, Institute of Earth Sciences “Jaume Almera” Consejo Superior de Investigaciones Cientificas, Lluis Solé Sabaris s/n, 08028 Barcelona 39, Spain, Arnau Folch, Institute of Earth Sciences “Jaume Almera” Consejo Superior de Investigaciones Cientificas, Lluis Solé Sabaris s/n, 08028 Barcelona, Spain
  • Edited by Joan Marti, Institut de Ciències de la Terra 'Jaume Almera', Barcelona, Gerald G. J. Ernst, Universiteit Gent, Belgium
  • Book: Volcanoes and the Environment
  • Online publication: 14 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614767.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Anticipating volcanic eruptions
    • By Joan Martí, Institute of Earth Sciences “Jaume Almera” Consejo Superior de Investigaciones Cientificas, Lluis Solé Sabaris s/n, 08028 Barcelona 39, Spain, Arnau Folch, Institute of Earth Sciences “Jaume Almera” Consejo Superior de Investigaciones Cientificas, Lluis Solé Sabaris s/n, 08028 Barcelona, Spain
  • Edited by Joan Marti, Institut de Ciències de la Terra 'Jaume Almera', Barcelona, Gerald G. J. Ernst, Universiteit Gent, Belgium
  • Book: Volcanoes and the Environment
  • Online publication: 14 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614767.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Anticipating volcanic eruptions
    • By Joan Martí, Institute of Earth Sciences “Jaume Almera” Consejo Superior de Investigaciones Cientificas, Lluis Solé Sabaris s/n, 08028 Barcelona 39, Spain, Arnau Folch, Institute of Earth Sciences “Jaume Almera” Consejo Superior de Investigaciones Cientificas, Lluis Solé Sabaris s/n, 08028 Barcelona, Spain
  • Edited by Joan Marti, Institut de Ciències de la Terra 'Jaume Almera', Barcelona, Gerald G. J. Ernst, Universiteit Gent, Belgium
  • Book: Volcanoes and the Environment
  • Online publication: 14 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614767.004
Available formats
×