Skip to main content Accessibility help
  • Print publication year: 2015
  • Online publication date: February 2015

18 - Oceanic anoxia during the Permian–Triassic transition and links to volcanism

from Part Three - Modes of volcanically induced global environmental change

Related content

Powered by UNSILO


Algeo, T. J., Henderson, C. M., Ellwood, B. al. (2012). Evidence for a diachronous late Permian marine crisis from the Canadian Arctic region. Geological Society of America Bulletin, 124, 1424–1448.
Algeo, T. J., Hannigan, R., Rowe, al. (2007). Sequencing events across the Permian–Triassic boundary, Guryul Ravine (Kashmir, India). Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 328–346.
Algeo, T. J., Shen, Y., Zhang, al. (2008). Association of 34S-depleted pyrite layers with negative carbonate δ13C excursions at the Permian–Triassic boundary: evidence for upwelling of sulfidic deep-ocean water masses. Geochemistry, Geophysics, Geosystems, 9, 1–10.
Algeo, T. J., Hinnov, L., Moser, al. (2010). Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology, 38, 187–190.
Alibo, D. S. and Nozaki, Y. (1999). Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63, 363–372.
Archer, D., Kheshgi, H. and Maier-Reimer, E. (1997). Multiple timescales for neutralization of fossil fuel CO2. Geophysical Research Letters, 24, 405–408.
Beatty, T. W., Zonneveld, J. P. and Henderson, C. M. (2008). Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: a case for a shallow-marine habitable zone. Geology, 36, 771–774.
Bond, D. P. G. and Wignall, P. B. (2010). Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin, 122, 1265–1279.
Brand, U., Posenato, R., Came, al. (2012). The end-Permian mass extinction: a rapid volcanic CO2 and CH4 climatic catastrophe. Chemical Geology, 322 –323, 121–144.
Brennecka, G. A., Herrmann, A. D., Algeo, T. J. and Anbar, A. D. (2011). Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 108, 17631–17634.
Burgess, S. D., Bowring, S. and Shen, S.-Z. (2014). High-precision timeline for Earth’s most severe extinction. Proceedings of the National Academy of Sciences of the United States of America, doi: 10.1073/pnas.1317692111.
Cao, C., Love, G. D., Hays, L. al. (2009). Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth and Planetary Science Letters, 281, 188–201.
Casford, J. (2011). Isorenieratene; biomarker for photic layer anoxia? 2011 Fall Meeting, AGU, San Francisco, CA, 5–9 December, abstract B21E-0293.
Cortecci, G., Reyes, E., Berti, G. and Casati, P. (1981). Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chemical Geology, 34, 65–79.
Dahl, T. W., Hammarlund, E. U., Anbar, A. al. (2010). Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences of the United States of America, 107, 17911–17915.
Dolenec, T., Lojen, S. and Ramovš, A. (2001). The Permian–Triassic boundary in western Slovenia (Idrijca Valley section): magnetostratigraphy, stable isotopes, and elemental variations. Chemical Geology, 175, 175–190.
Dunk, R. M., Mills, R. A. and Jenkins, W. J. (2002). A reevaluation of the oceanic uranium budget for the Holocene. Chemical Geology, 190, 45–67.
Ehrenberg, S. N., Svånå, T. A. and Swart, P. K. (2008). Uranium depletion across the Permian–Triassic boundary in Middle East carbonates: signature of oceanic anoxia. AAPG Bulletin, 92, 691–707.
Fio, K., Spangenberg, J. E., Vlahović, al. (2010). Stable isotope and trace element stratigraphy across the Permian–Triassic transition: a redefinition of the boundary in the Velebit Mountain, Croatia. Chemical Geology, 278, 38–57.
German, C. R. and Elderfield, H. (1990). Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography, 5, 823–833.
Grice, K., Cao, C., Love, G. al. (2005). Photic zone euxinia during the Permian–Triassic superanoxic event. Science, 307, 706–709.
Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. and Canfield, D. E. (2002). Calibration of sulfate levels in the Archean ocean. Science, 298, 2372–2374.
Hallam, A. (1989). The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 325, 437–455.
Hays, L. E., Beatty, T. W. and Henderson, C. M. (2007). Evidence for photic zone euxinia through the end-Permian mass extinction in the Panthalassic Ocean (Peace River Basin, Western Canada). Palaeoworld, 16, 39–50.
Hays, L. E., Grice, K., Foster, C. B. and Summons, R. E. (2012). Biomarker and isotopic trends in a Permian–Triassic sedimentary section at Kap Stosch, Greenland. Organic Geochemistry, 43, 67–82.
Isozaki, Y. (1997). Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science, 276, 235–238.
Kaiho, K. (1994). Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology, 22, 719–722.
Kajiwara, Y., Yamakita, S., Ishida, K., Ishiga, H. and Imai, A. (1994). Development of a largely anoxic stratified ocean and its temporary massive mixing at the Permian/Triassic boundary supported by the sulfur isotopic record. Palaeogeography, Palaeoclimatology, Palaeoecology, 111, 367–379.
Kakuwa, Y. and Matsumoto, R. (2006). Cerium negative anomaly just before the Permian and Triassic boundary event: the upward expansion of anoxia in the water column. Palaeogeography, Palaeoclimatology, Palaeoecology, 229, 335–344.
Kamo, S. L., Czamanske, G. K., Amelin, al. (2003). Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters, 214, 75–91.
Kato, Y., Nakao, K. and Isozaki, Y. (2002). Geochemistry of late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change. Chemical Geology, 182, 15–34.
Kiehl, J. T. and Shields, C. A. (2005). Climate simulation of the latest Permian: implications for mass extinction. Geology, 33, 757–760.
Liao, W., Wang, Y., Kershaw, S., Weng, Z. and Yang, H. (2010). Shallow-marine dysoxia across the Permian–Triassic boundary: evidence from pyrite framboids in the microbialite in South China. Sedimentary Geology, 232, 77–83.
Logan, A. and Hills, L. V., ed. (1973). The Permian and Triassic Systems and their Mutual Boundary. Calgary: Canadian Society of Petroleum Geologists.
Loope, G. R., Kump, L. R. and Arthur, M. A. (2013). Shallow water redox conditions from the Permian–Triassic boundary microbialite: the rare earth element and iodine geochemistry of carbonates from Turkey and South China. Chemical Geology, 351, 195–208.
Luo, G., Kump, L. R., Wang, al. (2010). Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction. Earth and Planetary Science Letters, 300, 101–111.
Meyer, K. M. and Kump, L. R. (2008). Oceanic euxinia in Earth history: causes and consequences. Annual Review of Earth and Planetary Sciences, 36, 251–288.
Meyer, K. M., Kump, L. R. and Ridgwell, A. (2008). Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology, 36, 747–750.
Meyer, K. M., Macalady, J. L., Fulton, J. al. (2011). Carotenoid biomarkers as an imperfect reflection of the anoxygenic phototrophic community in meromictic Fayetteville Green Lake. Geobiology, 9, 321–329.
Mundil, R., Ludwig, K. R., Metcalfe, I. and Renne, P. R. (2004). Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science, 305, 1760–1763.
Neubert, N., Nägler, T. F. and Böttcher, M. E. (2008). Sulfidity controls molybdenum isotope fractionation into euxinic sediments: evidence from the modern Black Sea. Geology, 36, 775–778.
Newton, R. J., Pevitt, E. L., Wignall, P. B. and Bottrell, S. H. (2004). Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. Earth and Planetary Science Letters, 218, 331–345.
Nielsen, J. K. and Shen, Y. (2004). Evidence for sulfidic deep water during the late Permian in the East Greenland Basin. Geology, 32, 1037–1040.
Nielsen, J. K., Shen, Y., Piasecki, S. and Stemmerik, L. (2010). No abrupt change in redox condition caused the end-Permian marine ecosystem collapse in the East Greenland Basin. Earth and Planetary Science Letters, 291, 32–38.
Ozaki, K., Tajima, S. and Tajika, E. (2011). Conditions required for oceanic anoxia/euxinia: constraints from a one-dimensional ocean biogeochemical cycle model. Earth and Planetary Science Letters, 304, 270–279.
Proemse, B. C., Grasby, S. E., Wieser, M. E., Mayer, B. and Beauchamp, B. (2013). Molybdenum isotopic evidence for oxic marine conditions during the latest Permian extinction. Geology, 41, 967–970.
Renne, P. R., Black, M. T., Zichao, Z., Richards, M. A. and Basu, A. R. (1995). Synchrony and causal relations between Permian–Triassic boundary crises and Siberian flood volcanism. Science, 269, 1413–1416.
Riccardi, A. L., Arthur, M. A. and Kump, L. R. (2006). Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochimica et Cosmochimica Acta, 70, 5740–5752.
Shen, J., Algeo, T. J., Zhou, al. (2012). Volcanic perturbations of the marine environment in South China preceding the latest Permian mass extinction and their biotic effects. Geobiology, 10, 82–103.
Shen, W., Lin, Y., Xu, al. (2007). Pyrite framboids in the Permian–Triassic boundary section at Meishan, China: evidence for dysoxic deposition. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 323–331.
Siebert, C., Nägler, T. F., von Blanckenburg, F. and Kramers, J. D. (2003). Molybdenum isotope records as a potential new proxy for paleoceanography. Earth and Planetary Science Letters, 211, 159–171.
Silva-Tamayo, J. C., Payne, J. L., Wignall, P. al. (2013). Ca, Mo and U isotopes suggest Neoproterozoic-like ocean conditions during the late Permian mass extinction. Mineralogical Magazine, 77, 2213.
Song, H., Wignall, P. B., Tong, al. (2012). Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth and Planetary Science Letters, 353 –354, 12–21.
Stirling, C. H., Andersen, M. B., Potter, E.-K. and Halliday, A. N. (2007). Low-temperature isotopic fractionation of uranium. Earth and Planetary Science Letters, 264, 208–225.
Svensen, H., Planke, S., Polozov, A. al. (2009). Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters, 277, 490–500.
Tavakoli, V. and Rahimpour-Bonab, H. (2012). Uranium depletion across Permian–Triassic boundary in Persian Gulf and its implications for paleooceanic conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 350 –352, 101–113.
Tyrrell, T. (1999). The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400, 525–531.
Van Cappellen, P. and Ingall, E. D. (1994). Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography, 9, 677–692.
Voegelin, A. R., Nägler, T. F., Samankassou, E. and Villa, I. M. (2009). Molybdenum isotopic composition of modern and Carboniferous carbonates. Chemical Geology, 265, 488–498.
Weyer, S., Anbar, A. D., Gerdes, al. (2008). Natural fractionation of 238U/235U. Geochimica et Cosmochimica Acta, 72, 345–359.
Wignall, P. B. (1994). Black Shales. Oxford: Oxford University Press.
Wignall, P. B. and Hallam, A. (1992). Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 93, 21–46.
Wignall, P. B. and Twitchett, R. J. (1996). Oceanic anoxia and the end-Permian mass extinction. Science, 272, 1155–1158.
Wignall, P. B. and Twitchett, R. J. (2002). Extent, duration, and nature of the Permian–Triassic superanoxic event. Geological Society of America Special Paper, 356, 395–413.
Wignall, P. B., Newton, R. J. and Brookfield, M. E. (2005). Pyrite framboid evidence for oxygen-poor deposition during the Permian–Triassic crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology, 216, 183–188.
Wilkin, R. T., Barnes, H. L. and Brantley, S. L. (1996). The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta, 60, 3897–3912.
Winguth, A. M. E. and Maier-Reimer, E. (2005). Causes of the marine productivity and oxygen changes associated with the Permian–Triassic boundary; a reevaluation with ocean general circulation models. Marine Geology, 217, 283–304.
Winguth, C. and Winguth, A. M. E. (2012). Simulating Permian–Triassic oceanic anoxia distribution: implications for species extinction and recovery. Geology, 40, 127–130.
Woods, A. D., Bottjer, D. J., Mutti, M. and Morrison, J. (1999). Lower Triassic large sea-floor carbonate cements: their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology, 27, 645–648.
Zhou, L., Wignall, P. B., Su, al. (2012). U/Mo ratios and δ98/95Mo as local and global redox proxies during mass extinction events. Chemical Geology, 324 –325, 99–107.