Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T20:54:44.911Z Has data issue: false hasContentIssue false

9 - Viscoelastic Composite Materials

Published online by Cambridge University Press:  21 January 2010

Roderic Lakes
Affiliation:
University of Wisconsin, Madison
Get access

Summary

Introduction

Composite materials are those that contain two or more distinct constituent materials or phases, on a microscopic or macroscopic size scale larger than the atomic scale, and in which physical properties are significantly altered in comparison with those of a homogeneous material. In this vein, fiberglass and other fibrous materials are viewed as composites, but alloys, such as brass, are not. Semicrystalline polymers, such as polyethylene, have a heterogeneous structure, which can be treated via composite theory. Biological materials also have a heterogeneous structure and are known as natural composites. Composites may contain solid, liquid, and gas phases. For example, composites of gas and liquid include mist and foam; composites of solid and gas include foam and smoke. Composites with a structural role have several solid phases or a connected solid phase with gas or liquid in the interstices (structural foam and honeycomb).

Composite Structures and Properties

Ideal Structures

The properties of composites are greatly dependent upon microstructure. Composites differ from homogeneous materials in that considerable control can be exerted over the larger scale structure; and hence over the desired properties. In particular, the properties of a composite depend upon the shape of the heterogeneities, upon the volume fraction occupied by them, and upon the interface between the constituents. Volume fraction refers to the ratio of the volume of a constituent to the total volume of a composite specimen. The shape of the heterogeneities in a composite is classified as follows. The principal inclusion shape categories (Figure 9.1) are the particle, with no long dimension; the fiber, with one long dimension; and the platelet (flake, lamina), with two long dimensions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×