Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T04:01:08.153Z Has data issue: false hasContentIssue false

9 - Ultracold Gases with Intrinsic Scale Invariance

from Part II - General Topics

Published online by Cambridge University Press:  18 May 2017

C. Chin
Affiliation:
James Franck Institute, Enrico Fermi Institute, University of Chicago, Chicago
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

Scale invariance is conventionally discussed in the context of critical phenomena near a continuous phase transition. In atomic gases, a new class of scale invariant systems emerges, which we call “intrinsic scale invariance.” In these systems, the scaling symmetry does not rely on a phase transition, but comes from the balance of kinetic and interaction energy at different length scales. Three examples are discussed here: three-dimensional unitary Fermi gas, two-dimensional dilute Bose gas, and unitary Bose gas. The first two are invariant under continuous scaling transformation, and thus they share the same universal thermodynamics. Unitary Bose gas is a special case with expected discrete scaling symmetry because of Efimov three-body physics.We show that the discrete scale invariance can be captured by a complex scaling dimension and suggest a universal form for the observables.

Introduction

The achievement of atomic Bose-Einstein condensation (BEC) in 1995 initiated a new adventure to explore quantum many-body phenomena in the gas phase, a journey that has yielded much excitement and is still progressing fast. Because of their diluteness, ultracold atomic gases can be precisely modeled and characterized with high accuracy. In addition, new opportunities have emerged in the past decade to prepare cold atoms in the strong coupling regime. By loading the samples into optical lattices [1] or tuning them near a Feshbach resonance [2], for instance, cold atoms offer a unique platform to investigate strongly correlated quantum phenomena. Examples include the superfluid-Mott insulator transition [3] (see also Chapter 13), BEC-BCS (Bardeen-Cooper-Schrieffer) crossover [4, 5, 6, 7] (see also related overview in Chapter 12), Efimov trimer states [8], and Berezinskii- Kosterlitz-Thouless transition in two dimensions [9] (see also Chapter 10). One key motivation in these explorations is to uncover new, universal laws that underpin the behavior of strong-coupled few- and many-body quantum systems.

In this chapter, we discuss “scale invariance” as a generic attribute in various cold atom systems, including all of the aforementioned examples. While scale invariance is conventionally discussed in the context of critical phenomena, the cold atom systems that interest us belong to a new class, which we call “intrinsic scale invariance.”

In the following, we first overview the main features of different types of scale invariance and discuss related examples in cold atom systems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bloch, Immanuel. 2005. Ultracold quantum gases in optical lattices. Nat. Phys., 1, 23–30.Google Scholar
[2] Chin, C., Grimm, R., Julienne, P., and Tiesinga, E. 2010. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82, 1225–1286.Google Scholar
[3] Greiner, M., Mandel, O., Esslinger, T., Hansch, T. W., and Bloch, I. 2002. Feshbach resonances in ultracold gases. Nature, 415, 39–44.Google Scholar
[4] Regal, C. A., Greiner, M., and Jin, D. S. 2004. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett., 92, 040403.Google Scholar
[5] Zwierlein, M. W., Stan, C. A., Schunck, C. H., Raupach, S. M. F., Kerman, A. J., and Ketterle, W. 2004. Condensation of pairs of fermionic atoms near a Feshbach resonance. Phys. Rev. Lett., 92, 120403.Google Scholar
[6] Bartenstein, M., Altmeyer, A., Riedl, S., Jochim, S., Chin, C., Denschlag, J. Hecker, and Grimm, R. 2004. Crossover from a molecular Bose-Einstein condensate to a degenerate Fermi gas. Phys. Rev. Lett., 92, 120401.Google Scholar
[7] Bourdel, T., Khaykovich, L., Cubizolles, J., Zhang, J., Chevy, F., Teichmann, M., Tarruell, L., Kokkelmans, S. J. J. M. F., and Salomon, C. 2004. Experimental study of the BEC-BCS crossover region in lithium 6. Phys. Rev. Lett., 93, 050401.Google Scholar
[8] Kraemer, T., Mark, M., Waldburger, P., Danzl, J. G., Chin, C., Engeser, B., Lange, A. D., Pilch, K., Jaakkola, A., Ngerl, H.-C., and Grimm, R. 2006. Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature, 440, 315–318.Google Scholar
[9] Hadzibabic, Z., Kruger, P., Cheneau, M., Battelier, B., and Dalibard, J. 2006. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature, 441, 1118–1121.Google Scholar
[10] Donner, T., Ritter, S., Bourdel, T., Öttl, A., Köhl, M., and Esslinger, T. 2007. Critical behavior of a trapped interacting Bose gas. Science, 315, 1556–1558.Google Scholar
[11] Zhang, X., Hung, C.-L., Tung, S.-K., and Chin, C. 2012. Observation of quantum criticality with ultracold atoms in optical lattices. Science, 335, 1070.Google Scholar
[12] O'Hara, K.M., Hemmer, S. L., Gehm, M. E., Granade, S. R., and Thomas, J. E. 2002. Observation of a strongly interacting degenerate Fermi gas of atoms. Science, 298, 2179–2182.Google Scholar
[13] Efimov, V. 1970. Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B, 33, 563–564.Google Scholar
[14] Kinoshita, T., Wenger, T., and Weiss, D. S. 2004. Observation of a one-dimensional Tonks-Girardeau gas. Science, 305, 1125–1128.Google Scholar
[15] Martiyanov, K., Makhalov, V., and Turlapov, A. 2010. Observation of a twodimensional Fermi gas of atoms. Phys. Rev. Lett., 105, 030404.Google Scholar
[16] Vogt, E., Feld, M., Fröhlich, B., Pertot, D., Koschorreck, M., and Köhl, M. 2012. Scale invariance and viscosity of a two-dimensional Fermi gas. Phys. Rev. Lett., 108, 070404.Google Scholar
[17] Cao, C., Elliott, E., Joseph, J., Wu, H., Petricka, J., Schäfer, T., and Thomas, J. E. 2011. Universal quantum viscosity in a unitary Fermi gas. Science, 331, 58–61.Google Scholar
[18] Gritsev, V., Barmettler, P., and Demler, E. 2010. Scaling approach to quantum nonequilibrium dynamics of many-body systems. New J. Phys., 12, 113005.Google Scholar
[19] Hung, C.-L., Gurarie, V., and Chin, C. 2013. From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid. Science, 341, 1213.CrossRefGoogle Scholar
[20] Rohringer, W., Fischer, D., Steiner, F., Mazets, I. E., Schmiedmayer, J., and Trupke, M. 2015. Non-equilibrium scale invariance and shortcuts to adiabaticity in a onedimensional Bose gas. Sci. Rep., 5, 1–7.Google Scholar
[21] Pitaevskii, L. P., and Rosch, A. 1997. Breathing modes and hidden symmetry of trapped atoms in two dimensions. Phys. Rev. A, 55, R853–R856.Google Scholar
[22] Hung, C.-L., Zhang, X., Gemelke, N., and Chin, C. 2011. Observation of scale invariance and universality in two-dimensional Bose gases. Nature, 470, 236.Google Scholar
[23] Ho, T.-L. 2004. Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett., 92, 090402.Google Scholar
[24] Bishop, R. A. 2001. Preface Int. J. Mod. Phys. B, 15, iii.
[25] Baker, G. A.Jr. 1999. Neutron matter model Phys. Rev. C, 60, 054311.
[26] Gehm, M. E., Hemmer, S. L., Granade, S. R., O'Hara, K. M., and Thomas, J. E. 2003. Mechanical stability of a strongly interacting Fermi gas of atoms. Phys. Rev. A, 68, 011401.Google Scholar
[27] Ku, M. J. H., Sommer, A. T., Cheuk, L. W., and Zwierlein, M. W. 2012. Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science, 335, 563–567.Google Scholar
[28] Gemelke, N., Zhang, X., Hung, C.-L., and Chin, C. 2009. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Nature, 460, 995.Google Scholar
[29] Petrov, D. S., Holzmann, M., and Shlyapnikov, G. V. 2000. Bose-Einstein condensation in quasi-2D trapped gases. Phys. Rev. Lett., 84, 2551–2555.Google Scholar
[30] Pitaevskii, L. P., and Rosch, A. 1997. Breathing modes and hidden symmetry of trapped atoms in two dimensions. Phys. Rev. A, 55, R853–R856.Google Scholar
[31] Prokof'ev, N., and Svistunov, B. 2002. Two-dimensional weakly interacting Bose gas in the fluctuation region. Phys. Rev. A, 66, 43608.Google Scholar
[32] Holzmann, Markus, Chevallier, Maguelonne, and Krauth, Werner. 2010. Universal correlations and coherence in quasi-two-dimensional trapped Bose gases. Phys. Rev. A, 81, 043622.Google Scholar
[33] Cockburn, S. P., and Proukakis, N. P. 2012. Ab initio methods for finite-temperature two-dimensional Bose gases. Phys. Rev. A, 86, 033610.Google Scholar
[34] Kinast, J., Turlapov, A., Thomas, J. E., Chen, Q., Stajic, J., and Levin, K. 2005. Heat capacity of a strongly interacting Fermi gas. Science, 307, 1296–1299.Google Scholar
[35] Thomas, J. E., Kinast, J., and Turlapov, A. 2005. Virial theorem and universality in a unitary Fermi gas. Phys. Rev. Lett., 95, 120402.Google Scholar
[36] Horikoshi, M., Nakajima, S., Ueda, M., and Mukaiyama, T. 2010. Measurement of universal thermodynamic functions for a unitary Fermi gas. Science, 327, 442–445.Google Scholar
[37] Nascimbène, S., Navon, N., Jiang, K. J., Chevy, F., and Salomon, C. 2010. Exploring the thermodynamics of a universal Fermi gas. Nature, 463, 1057–1060.Google Scholar
[38] Pitaevskii, L.P., and Lifshitz, E. M. 1980. Statistical Physics, Part 2: Theory of the Condensed State. Vol. 9. Butterworth-Heinemann.
[39] Desbuquois, R., Yefsah, T., Chomaz, L., Weitenberg, C., Corman, L., Nascimbène, S., and Dalibard, J. 2014. Determination of scale-invariant equations of state without fitting parameters: application to the two-dimensional Bose gas across the Berezinskii- Kosterlitz-Thouless transition. Phys. Rev. Lett., 113, 020404.CrossRefGoogle Scholar
[40] Son, D. T., and Wingate, M. 2006. General coordinate invariance and conformal invariance in nonrelativistic physics: unitary Fermi gas. Ann. Phys., 321(1, special issue), 197–224.Google Scholar
[41] Braaten, Eric, and Hammer, H.-W. 2006. Universality in few-body systems with large scattering length. Phys. Rep., 428, 259–390.Google Scholar
[42] Horinouchi, Y., and Ueda, M. 2015. Onset of a limit cycle and universal three-body parameter in Efimov physics. Phys. Rev. Lett., 114, 025301.Google Scholar
[43] Rem, B. S., Grier, A. T., Ferrier-Barbut, I., Eismann, U., Langen, T., Navon, N., Khaykovich, L., Werner, F., Petrov, D. S., Chevy, F., and Salomon, C. 2013. Lifetime of the Bose gas with resonant interactions. Phys. Rev. Lett., 110, 163202.Google Scholar
[44] Fletcher, R. J., Gaunt, A. L., Navon, N., Smith, R. P., and Hadzibabic, Z. 2013. Stability of a unitary Bose gas. Phys. Rev. Lett., 111, 125303.Google Scholar
[45] Makotyn, P., Klauss, C. E., Goldberger, D. L., Cornell, E. A., and Jin, D. S. 2014. Universal dynamics of a degenerate unitary Bose gas. Nat. Phys., 10, 116.Google Scholar
[46] Efimov, V. 1979. Low-energy properties of three resonantly-interacting particles. Sov. J. Nucl. Phys., 29, 546.Google Scholar
[47] Esry, B. D., Greene, Chris H., and Burke, James P. 1999. Recombination of three atoms in the ultracold limit. Phys. Rev. Lett., 83, 1751–1754.Google Scholar
[48] Tung, S.-K., Jiménez-García, K., Johansen, J., Parker, C. V., and Chin, C. 2014. Geometric scaling of Efimov states in a 6Li-133Cs mixture. Phys. Rev. Lett., 113, 240402.Google Scholar
[49] Pires, R., Ulmanis, J., Häfner, S., Repp, M., Arias, A., Kuhnle, E. D., and Weidemüller, M. 2014. Observation of Efimov resonances in a mixture with extreme mass imbalance. Phys. Rev. Lett., 112, 250404.Google Scholar
[50] Bedaque, P. F., Hammer, H.-W., and van Kolck, U. 1999. Renormalization of the three-body system with short-range interactions. Phys. Rev. Lett., 82, 463–467.Google Scholar
[51] Berninger, M., Zenesini, A., Huang, B., Harm, W., Nägerl, H.-C., Ferlaino, F., Grimm, R., Julienne, P. S., and Hutson, J. M. 2011. Universality of the three-body parameter for Efimov states in ultracold cesium. Phys. Rev. Lett., 107, 120401.Google Scholar
[52] Chin, C. Universal scaling of Efimov resonance positions in cold atom systems. arXiv:1111.1484.
[53] Wang, J., D'Incao, J. P., Esry, B. D., and Greene, C. H. 2012. Origin of the three-body parameter universality in Efimov physics. Phys. Rev. Lett., 108, 263001.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×