Skip to main content Accessibility help
×
Home
  • Print publication year: 2017
  • Online publication date: May 2017

3 - Twenty Years of Atomic Quantum Gases: 1995-2015

from Part I - Introduction

Summary

The field of atomic quantum gases has seen rapid and sometimes surprising developments since its beginnings in 1995. In this chapter, I summarize, highlight, and comment on selected topics.

Introduction

Bose-Einstein condensation (BEC) in atomic gases was first observed in 1995, and has changed the face of atomic physics. It is for atoms or matter waves what the laser is for photons: a macroscopically occupied quantum state. It was regarded as an elusive goal until it was discovered in 1995. Although BEC was immediately viewed as a major accomplishment, its impact has far exceeded expectations. Now, twenty years on, there is no question that the field remains exciting.

It is impossible to give a review over the developments during those twenty years. Instead, in this chapter, I want to illustrate how often predictions or expectations changed in the pursuit of Bose-Einstein condensation. There were many surprises, and some advances and breakthroughs happened although they were predicted to be impossible. A lesson we can learn from this is that we should always carefully read the fine print when something is proven or assumed impossible, and try to figure out if the assumptions can be circumvented!

Since the early history of Bose-Einstein condensation provides several examples for such “impossibility theorems,” I digress into those earlier developments in the first part of this chapter.

Early Theoretical Questions

Validity of the Prediction of Bose-Einstein Condensation

Einstein predicted Bose-Einstein condensation in 1924 in the second of two papers where he generalized Bose's treatment from photons to massive particles [1]. Using statistical arguments introduced by Bose, he found that below a critical temperature, bosonic particles condense in the lowest energy state of the system. In contrast, at very low temperature photons can simply disappear.

However, for about a decade, this prediction was not taken at face value. Einstein himself wrote to Ehrenfest, “From a certain temperature on, the molecules ‘condense’ without attractive forces; that is, they accumulate at zero velocity. The theory is pretty, but is there some truth in it?” [2].

In 1927, George E. Uhlenbeck concluded that the predicted BEC phase transition was an artifact of the replacement of the summation over states by an integral and wrote that no “splitting into two phases” would occur [3].

Related content

Powered by UNSILO
[1] Einstein, A.. 1925. Quantentheorie des einatomigen idealen Gases. II. Sitzungsber. Preuss. Akad. Wiss., Bericht 1, 3–14.
[2] Einstein, A. 1924. Letter to Ehrenfest (Dec.). Quoted in Abraham Pais, Subtle Is the Lord: The Science and the Life of Albert Einstein. Oxford: Oxford University Press, 2005, p. 432.
[3] Uhlenbeck, G. E. 1927. Over Statistische Methoden in de Theorie der Quanta. 's Gravenhage: Martinus Nijhoff, pp. 69–71, cited and translated in [4].
[4] Monaldi, D. 2008. First steps (and stumbles) of Bose-Einstein condensation. In Christian, Joas, Christoph, Lehner, and Jürgen, Renn (eds), HQ-1: Conference on the History of Quantum Physics, vols. I and II. Berlin: Max-Planck-Institut fr Wissenschaftsgeschichte, p. 135; www.mpiwg-berlin.mpg.de/en/file/26683/ download?token=kdl9Wa0y.
[5] Kahn, B., and Uhlenbeck, G. E. 1937. On the theory of condensation. Physica, 4, 1155.
[6] London, F. 1938. On the Bose-Einstein condensation. Phys. Rev., 54, 947.
[7] London, F. 1938. The ƛ-phenomenon of liquid helium and the Bose-Einstein degeneracy. Nature, 141, 643.
[8] Schrödinger, E. 1952. Statistical Thermodynamics. Cambridge: Cambridge University Press, reprinted by Dover Publications (New York, 1989).
[9] Crooker, B. C., Hebral, B., Smith, E. N., Takano, Y., and Reppy, J. D. 1983. Superfluidity in a dilute Bose gas. Phys. Rev. Lett., 51, 666–669.
[10] Reppy, J. D. 1984. 4He as a dilute Bose gas. Physica B, 126, 335–341.
[11] Rasolt, M., Stephen, M. H., Fisher, M. E., and Weichman, P. B. 1984. Critical behavior of a dilute interacting Bose fluid. Phys. Rev. Lett., 53, 798.
[12] Cho, H., and Williams, G. A. 1995. Vortex core size in submonolayer superfluid 4He films. Phys. Rev. Lett., 75, 1562.
[13] Hecht, C. E. 1959. The possible superfluid behaviour of hydrogen atom gases and liquids. Physica, 25, 1159.
[14] Stwalley, W. C., and Nosanow, L. H. 1976. Possible “new” quantum systems. Phys. Rev. Lett., 36, 910.
[15] Silvera, I. F., and Walraven, J. T. M. 1980. Stabilization of atomic hydrogen at low temperature. Phys. Rev. Lett., 44, 164–168.
[16] Cline, R. W., Smith, D. A., Greytak, T. J., and Kleppner, D. 1980. Magnetic confinement of spin-polarized atomic hydrogen. Phys. Rev. Lett., 45, 2117.
[17] Fried, D. G., Killian, T. C., Willmann, L., Landhuis, D., Moss, S. C., Kleppner, D., and Greytak, T. J. 1998. Bose-Einstein condensation of atomic hydrogen. Phys. Rev. Lett., 81, 3811–3814.
[18] Greytak, T. J. 1995. Prospects for Bose-Einstein condensation in magnetically trapped atomic hydrogen. In Griffin, A., Snoke, D. W., and Stringari, S. (eds), Bose-Einstein Condensation. Cambridge: Cambridge University Press, pp. 131–159.
[19] Greytak, T. J., and Kleppner, D. 1984. Lectures on spin-polarized hydrogen. In Grynberg, G., and Stora, R. (eds), New Trends in Atomic Physics, Les Houches Summer School 1982. Amsterdam: North-Holland, p. 1125.
[20] Silvera, I. F., and Walraven, J. T. M. 1986. Spin-polarized atomic hydrogen. In Brewer, D. F. (ed), Progress in Low Temperature Physics, vol. X. Amsterdam: Elsevier, p. 139.
[21] Walraven, J. T. M. 1996. Atomic hydrogen in magnetostatic traps. Oppo, G. L., Barnett, S. M., Riis, E., and Wilkinson, M. (eds), Quantum Dynamics of Simple Systems. London: Institute of Physics Publ., pp. 315–352.
[22] Silvera, I. F. 1995. Spin-polarized hydrogen: prospects for Bose-Einstein condensation and two-dimensional superfluidity. In Griffin, A., Snoke, D.W., and Stringari, S. (eds), Bose-Einstein Condensation. Cambridge: Cambridge University Press, pp. 160–172.
[23] Mosk, A. P., Reynolds, M. W., Hijmans, T. W., and Walraven, J. T. M. 1998. Optical observation of atomic hydrogen in the surface of liquid helium. J. Low Temp. Phys., 113, 217–222.
[24] Matsubara, A., Arai, T., Hotta, S., Korhonen, J. S., Mizusaki, T., and Hiraj, A. 1995. Quest for Kosterlitz-Thouless transition in two-dimensional hydrogen. In Griffin, A., Snoke, D. W., and Stringari, S. (eds), Bose-Einstein Condensation. Cambridge: Cambridge University Press, pp. 478–486.
[25] Safonov, A. I., Vasilyev, S. A., Yasnikov, I. S., Lukashevich, I. I., and Jaakola, S. 1998. Observation of quasicondensate in two-dimensional atomic hydrogen. Phys. Rev. Lett., 81, 4545.
[26] Goldman, V. V., Silvera, I. F., and Leggett, A. J. 1981. Atomic hydrogen in an inhomogeneous magnetic field: density profile and Bose-Einstein condensation. Phys. Rev. B, 24, 2870–2873.
[27] Huse, D. A., and Siggia, E. 1982. The density distribution of a weakly interacting Bose gas in an external potential. J. Low Temp. Phys., 46, 137.
[28] Oliva, J. 1989. Density profile of the weakly interacting Bose gas confined in a potential well: nonzero temperature. Phys. Rev. B, 39, 4197–4203.
[29] Stoof, H. T. C., Koelman, J. M. V. A., and Verhaar, B. J. 1988. Spin-exchange and dipole relaxation rates in atomic hydrogen: rigorous and simplified calculations. Phys. Rev. B, 38, 4688.
[30] Hess, H. F. 1986. Evaporative cooling of magnetically trapped and compressed spinpolarized hydrogen. Phys. Rev. B, 34, 3476.
[31] Masuhara, N., Doyle, J.M., Sandberg, J. C., Kleppner, D., Greytak, T. J., Hess, H. F., and Kochanski, G. P. 1988. Evaporative cooling of spin-polarized atomic hydrogen. Phys. Rev. Lett., 61, 935–938.
[32] Griffin, A., Snoke, D. W., and Stringari, S. 1995. Bose-Einstein Condensation. Cambridge: Cambridge University Press.
[33] Lin, J. L., and Wolfe, J. P. 1993. Bose-Einstein condensation of paraexcitons in stressed Cu2O. Phys. Rev. Lett., 71, 1222.
[34] O'Hara, K. E., Silleabhin, L., and Wolfe, J. P. 1999. Strong nonradiative recombination of excitons in Cu2O. and its impact on Bose-Einstein statistics. Phys. Rev. B, 60, 10565.
[35] Taubes, G. 1994. Hot on the trail of a cold mystery. Science, 265, 184–186.
[36] Ketterle, W., Davis, K. B., Joffe, M. A., Martin, A., and Pritchard, D. E. 1993. Highdensities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett., 70, 2253–2256.
[37] Cornell, E. A., Monroe, C., and Wieman, C. E. 1991. Multiply loaded, AC magnetic trap for neutral atoms. Phys. Rev. Lett., 67, 2439.
[38] Kasevich, M. A. 1995. Evaporative cooling and Raman cooling in a crossed dipole trap. Bull. Am. Phys. Soc., 40, 1270.
[39] Willems, P. A., and Libbrecht, K. G. 1995. Creating long-lived neutral-atom traps in a cryogenic environment. Phys. Rev. A, 51, 1403.
[40] Guery-Odelin, D., Soding, J., Desbiolles, P., and Dalibard, J. 1998. Is Bose-Einstein condensation of atomic cesium possible? Europhys. Lett., 44, 25–30.
[41] Hijmans, T. W., Kagan, Y., Shlyapnikov, G. V., and Walraven, J. T. M. 1993. Bose condensation and relaxation explosion in magnetically trapped atomic hydrogen. Phys. Rev. B, 48, 12886–12892.
[42] Davis, K. B., Mewes, M.-O., Joffe, M. A., Andrews, M. R., and Ketterle, W. 1995. Evaporative cooling of sodium atoms. Phys. Rev. Lett., 74, 5202–5205.
[43] High, A. A., Leonard, J. R., Hammack, A. T., Fogler, M. M., Butov, L. V., Kavokin, A. V., Campman, K. L., and Gossard, A. C. 2012. Spontaneous coherence in a cold exciton gas. Nature, 483, 584–588.
[44] Snoke, D., and Kavoulakis, G. M. 2014. Bose-Einstein condensation of excitons in Cu2O: progress over 30 years. Rep. Prog. Phys., 77, 116501.
[45] Demokritov, S. O., Demidov, V. E., Dzyapko, O., Melkov, G. A., Serga, A. A., Hillebrands, B., and Slavin, A. N. 2006. Bose-Einstein condensation of quasiequilibrium magnons at room temperature under pumping. Nature, 443, 430–433.
[46] Klaers, J., Schmitt, J., Vewinger, F., and Weitz, M. 2010. Bose-Einstein condensation of photons in an optical microcavity. Nature, 468, 545–548.
[47] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., Marchetti, F. M., Szymanska, M. H., Andre, R., Staehli, J. L., Savona, V., Littlewood, P. B., Deveaud, B., and Dang, L. S. 2006. Bose-Einstein condensation of exciton polaritons. Nature, 443, 409–414.
[48] Lagoudakis, K. G., Wouters, M., Richard, M., Baas, A., Carusotto, I., Andre, R., Dang, L. S., and Deveaud-Pledran, B. 2008. Quantized vortices in an excitonpolariton condensate. Nat Phys, 4, 706–710.
[49] Sanvitto, D., Marchetti, F. M., Szymanska, M. H., Tosi, G., Baudisch, M., Laussy, F. P., Krizhanovskii, D. N., Skolnick, M. S., Marrucci, L., Lemaitre, A., Bloch, J., Tejedor, C., and Vina, L. 2010. Persistent currents and quantized vortices in a polariton superfluid. Nat Phys, 6, 527–533.
[50] Lagoudakis, K. G., Ostatnick, T., Kavokin, A. V., Rubo, Y. G., Andr, R., and Deveaud-Pledran, B. 2009. Observation of half-quantum vortices in an excitonpolariton condensate. Science, 326, 974–976.
[51] Amo, A., Lefrere, J., Pigeon, S., Adrados, C., Ciuti, C., Carusotto, I., Houdre, R., Giacobino, E., and Bramati, A. 2009. Superfluidity of polaritons in semiconductor microcavities. Nat Phys, 5, 805–810.
[52] Abbarchi, M., Amo, A., Sala, V. G., Solnyshkov, D. D., Flayac, H., Ferrier, L., Sagnes, I., Galopin, E., Lemaitre, A., Malpuech, G., and Bloch, J. 2013. Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons. Nat Phys, 9, 275–279.
[53] Sun, Y., Wen, P., Yoon, Y., Liu, G., Steger, M., Pfeiffer, L. N., West, K., Snoke, D.W., and Nelson, K. A. 2017. Bose-Einstein condensation of long-lifetime polaritons in thermal equilibrium. Phys. Rev. Lett., 118, 016602.
[54] Borovik-Romanov, A. S., Bunkov, Y. M., Dmitriev, V. V., and Mukharskiy, Y. M. 1984. Long-lived induction signal in superfluid 3He-B. JETP Lett., 40, 1033.
[55] Bunkov, Y. M., and Volovik, G. E. 2007. Bose-Einstein condensation of magnons in superfluid 3He. J. Low Temp. Phys., 150, 135–144.
[56] Nikuni, T., Oshikawa, M., Oosawa, A., and Tanaka, H. 2000. Bose-Einstein condensation of dilute magnons in TlCuCl3. Phys. Rev. Lett., 84, 5868–5871.
[57] Ruegg, C., Cavadini, N., Furrer, A., Gudel, H. U., Kramer, K., Mutka, H., Wildes, A., Habicht, K., and Vorderwisch, P. 2003. Bose-Einstein condensation of the triplet states in the magnetic insulator TlCuCl3. Nature, 423, 62–65.
[58] Giamarchi, T., Ruegg, C., and Tchernyshyov, O. 2008. Bose-Einstein condensation in magnetic insulators. Nat Phys, 4, 198–204.
[59] Volovik, G. E. 2008. Twenty years of magnon Bose condensation and spin current superfluidity in 3He-B. J. Low Temp. Phys., 153, 266–284.
[60] Kohn, W., and Sherrington, D. 1970. Two kinds of bosons and Bose condensates. Rev. Mod. Phys., 42, 1–11.
[61] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1995. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269, 198–201.
[62] Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., and Ketterle, W. 1995. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969–3973.
[63] Bradley, C. C., Sackett, C. A., and Hulet, R. G. 1997. Bose-Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett., 78, 985–989.
[64] Bradley, C. C., Sackett, C. A., Tollet, J. J., and Hulet, R. G. 1995. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75, 1687–1690.
[65] Andrews, M. R., Townsend, C. G., Miesner, H.-J., Durfee, D. S., Kurn, D. M., and Ketterle, W. 1997. Observation of interference between two Bose condensates. Science, 275, 637–641.
[66] Hall, D. S., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1998. Measurements of relative phase in two-component Bose-Einstein condensates. Phys. Rev. Lett., 81, 1543–1546.
[67] Han, D. J., Wynar, R. H., Courteille, P., and Heinzen, D. J. 1998. Bose-Einstein condensation of large numbers of atoms in a magnetic time-averaged orbiting potential trap. Phys. Rev. A, 57, R4114.
[68] Hau, L. V., Busch, B. D., Liu, C., Dutton, Z., Burns, M. M., and Golovchenko, J. A. 1998. Near resonant spatial images of confined Bose-Einstein condensates in the “4D” magnetic bottle. Phys. Rev. A, 58, R54.
[69] Anderson, B. P., and Kasevich, M. A. 1998. Macroscopic quantum interference from atomic tunnel arrays. Science, 282, 1686.
[70] Ernst, U., Marte, A., Schreck, F., Schuster, J., and Rempe, G. 1998. Bose-Einstein condensation in a pure Ioffe-Pritchard field configuration. Europhys. Lett., 41, 1–6.
[71] Stwalley, W. C. 1976. Stability of spin-aligned hydrogen at low temperatures and high magnetic fields: new field-dependent scattering resonances and predissociations. Phys. Rev. Lett., 37, 1628.
[72] Tiesinga, E., Verhaar, B. J., and Stoof, H. T. C. 1993. Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A, 47, 4114–4122.
[73] Chin, C., Grimm, R., Julienne, P., and Tiesinga, E. 2010. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82, 1225–1286.
[74] Inouye, S., Andrews, M. R., Stenger, J., Miesner, H.-J., Stamper-Kurn, D. M., and Ketterle, W. 1998. Observation of Feshbach resonances in a Bose-Einstein condensate. Nature, 392, 151–154.
[75] Courteille, P., Freeland, R. S., Heinzen, D. J., van Abeelen, F. A., and Verhaar, B. J. 1998. Observation of a Feshbach resonance in cold atom scattering. Phys. Rev. Lett., 81, 69–72.
[76] Stenger, J., Inouye, S., Andrews, M. R., Miesner, H.-J., Stamper-Kurn, D. M., and Ketterle, W. 1999. Strongly enhanced inelastic collisions in a Bose-Einstein condensate near Feshbach resonances. Phys. Rev. Lett., 82, 2422–2425.
[77] Navon, N., Piatecki, S., Günter, K., Rem, B., Nguyen, T. C., Chevy, F., Krauth, W., and Salomon, C. 2011. Dynamics and thermodynamics of the low-temperature strongly interacting Bose gas. Phys. Rev. Lett., 107, 135301.
[78] Makotyn, P., Klauss, C. E., Goldberger, D. L., Cornell, E. A., and Jin, D. S. 2014. Universal dynamics of a degenerate unitary Bose gas. Nat Phys, 10, 116–119.
[79] Cubizolles, J., Bourdel, T., Kokkelmans, S. J. J. M, F., Shlyapnikov, G. V., and Salomon, C. 2003. Production of long-lived ultracold Li2 molecules from a Fermi gas. Phys. Rev. Lett., 91, 240401.
[80] Petrov, D. S., Salomon, C., and Shlyapnikov, G. V. 2004. Weakly bound dimers of fermionic atoms. Phys. Rev. Lett., 93, 090404.
[81] Pollack, S. E., Dries, D., Junker, M., Chen, Y. P., Corcovilos, T. A., and Hulet, R. G. 2009. Extreme tunability of interactions in a 7Li Bose-Einstein condensate. Phys. Rev. Lett., 102, 090402.
[82] Newbury, N. R., Myatt, C. J., and Wieman, C. E. 1995. s-wave elastic collisions between cold ground-state 87Rb atoms. Phys. Rev. A, 51, R2680.
[83] Maier, T., Kadau, H., Schmitt, M., Wenzel, M., Ferrier-Barbut, I., Pfau, T., Frisch, A., Baier, S., Aikawa, K., Chomaz, L., Mark, M. J., Ferlaino, F., Makrides, C., Tiesinga, E., Petrov, A., and Kotochigova, S. 2015. Emergence of chaotic scattering in ultracold Er and Dy. Phys. Rev. X, 5, 041029.
[84] Donley, E. A., Claussen, N. R., Cornish, S. L., Roberts, J. L., Cornell, E. A., and Wieman, C. E. 2001. Dynamics of collapsing and exploding Bose-Einstein condensates. Nature, 412, 295–299.
[85] Weber, T., Herbig, J., Mark, M., Nägerl, H.-C., and Grimm, R. 2003. Bose-Einstein condensation of cesium. Science, 299, 232–235.
[86] Jin, D. S., and Regal, C. A. 2008. Fermi gas experiments. In Inguscio, M., Ketterle, W., and Salomon, C. (eds), Ultracold Fermi Gases, Proceedings of the International School of Physics Enrico Fermi, Course CLXIV. Amsterdam: IOS Press, pp. 1–51.
[87] Ketterle, W., and Zwierlein, M. W. 2008. Making, probing and understanding ultracold Fermi gases. In Inguscio, M., Ketterle, W., and Salomon, C. (eds), Ultracold Fermi Gases, Proceedings of the International School of Physics Enrico Fermi, Course CLXIV. Amsterdam: IOS Press, pp. 95–287.
[88] Nascimbne, S., Navon, N., Jiang, K. J., Chevy, F., and Salomon, C. 2010. Exploring the thermodynamics of a universal Fermi gas. Nature, 463, 1057–1060.
[89] Ku, M. J. H., Sommer, A. T., Cheuk, L. W., and Zwierlein, M. W. 2012. Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science, 335, 563–567.
[90] Bloch, I., Dalibard, J., and Zwerger, W. 2008. Many-body physics with ultracold gases. Rev. Mod. Phys., 80, 885–880.
[91] Takasu, Y., Maki, K., Komori, K., Takano, T., Honda, K., Kumakura, M., Yabuzaki, T., and Takahashi, Y. 2003. Spin-singlet Bose-Einstein condensation of two-electron atoms. Phys. Rev. Lett., 91, 040404.
[92] Barrett, M. D., Sauer, J. A., and Chapman, M. S. 2001. All-optical formation of an atomic Bose-Einstein condensate. Phys. Rev. Lett., 87, 010404–4.
[93] Stamper-Kurn, D. M., and Ueda, M. 2013. Spinor Bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys., 85, 1191–1244.
[94] Stellmer, S., Pasquiou, B., Grimm, R., and Schreck, F. 2013. Laser cooling to quantum degeneracy. Phys. Rev. Lett., 110, 263003.
[95] Aikawa, K., Frisch, A., Mark, M., Baier, S., Grimm, R., and Ferlaino, F. 2014. Reaching Fermi degeneracy via universal dipolar scattering. Phys. Rev. Lett., 112, 010404.
[96] Doret, S. C., Connolly, C. B., Ketterle, W., and Doyle, J. M. 2009. Buffer-gas cooled Bose-Einstein condensate. Phys. Rev. Lett., 103, 103005.
[97] Abo-Shaeer, J. R., Raman, C., and Ketterle, W. 2002. Formation and decay of vortex lattices in Bose-Einstein condensates at finite temperatures. Phys. Rev. Lett., 88, 070409.
[98] van der Stam, K. M. R., van Ooijen, E. D., Meppelink, R., Vogels, J. M., and van der Straten, P. 2007. Large atom number Bose-Einstein condensate of sodium. Rev. Sci. Inst., 78, 013102.
[99] Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S., and Greiner, M. 2009. A quantum gas microscope for detecting single atoms in a Hubbard regime optical lattice. Nature, 462, 74–77.
[100] Ketterle, W., Durfee, D. S., and Stamper-Kurn, D. M. 1999. Making, probing and understanding Bose-Einstein condensates. In Inguscio, M., Stringari, S., and Wieman, C. E. (eds), Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics Enrico Fermi, Course CXL. Amsterdam: IOS Press, pp. 67–176.
[101] Bloch, I., Dalibard, J., and Nascimbene, S. 2012. Quantum simulations with ultracold quantum gases. Nature Physics, 9, 267–276.
[102] Goldman, N., Juzelinas, G., Öhberg, P., and Spielman, I. B. 2014. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys., 77, 126401.
[103] Kennedy, C. J., Burton, W. C., Chung, W. C., and Ketterle, W. 2015. Observation of Bose-Einstein condensation in a strong synthetic magnetic field. Nature Physics, 11, 859–864.