Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T04:24:55.853Z Has data issue: false hasContentIssue false

3 - Twenty Years of Atomic Quantum Gases: 1995-2015

from Part I - Introduction

Published online by Cambridge University Press:  18 May 2017

W. Ketterle
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

The field of atomic quantum gases has seen rapid and sometimes surprising developments since its beginnings in 1995. In this chapter, I summarize, highlight, and comment on selected topics.

Introduction

Bose-Einstein condensation (BEC) in atomic gases was first observed in 1995, and has changed the face of atomic physics. It is for atoms or matter waves what the laser is for photons: a macroscopically occupied quantum state. It was regarded as an elusive goal until it was discovered in 1995. Although BEC was immediately viewed as a major accomplishment, its impact has far exceeded expectations. Now, twenty years on, there is no question that the field remains exciting.

It is impossible to give a review over the developments during those twenty years. Instead, in this chapter, I want to illustrate how often predictions or expectations changed in the pursuit of Bose-Einstein condensation. There were many surprises, and some advances and breakthroughs happened although they were predicted to be impossible. A lesson we can learn from this is that we should always carefully read the fine print when something is proven or assumed impossible, and try to figure out if the assumptions can be circumvented!

Since the early history of Bose-Einstein condensation provides several examples for such “impossibility theorems,” I digress into those earlier developments in the first part of this chapter.

Early Theoretical Questions

Validity of the Prediction of Bose-Einstein Condensation

Einstein predicted Bose-Einstein condensation in 1924 in the second of two papers where he generalized Bose's treatment from photons to massive particles [1]. Using statistical arguments introduced by Bose, he found that below a critical temperature, bosonic particles condense in the lowest energy state of the system. In contrast, at very low temperature photons can simply disappear.

However, for about a decade, this prediction was not taken at face value. Einstein himself wrote to Ehrenfest, “From a certain temperature on, the molecules ‘condense’ without attractive forces; that is, they accumulate at zero velocity. The theory is pretty, but is there some truth in it?” [2].

In 1927, George E. Uhlenbeck concluded that the predicted BEC phase transition was an artifact of the replacement of the summation over states by an integral and wrote that no “splitting into two phases” would occur [3].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Einstein, A.. 1925. Quantentheorie des einatomigen idealen Gases. II. Sitzungsber. Preuss. Akad. Wiss., Bericht 1, 3–14.Google Scholar
[2] Einstein, A. 1924. Letter to Ehrenfest (Dec.). Quoted in Abraham Pais, Subtle Is the Lord: The Science and the Life of Albert Einstein. Oxford: Oxford University Press, 2005, p. 432.
[3] Uhlenbeck, G. E. 1927. Over Statistische Methoden in de Theorie der Quanta. 's Gravenhage: Martinus Nijhoff, pp. 69–71, cited and translated in [4].Google Scholar
[4] Monaldi, D. 2008. First steps (and stumbles) of Bose-Einstein condensation. In Christian, Joas, Christoph, Lehner, and Jürgen, Renn (eds), HQ-1: Conference on the History of Quantum Physics, vols. I and II. Berlin: Max-Planck-Institut fr Wissenschaftsgeschichte, p. 135; www.mpiwg-berlin.mpg.de/en/file/26683/ download?token=kdl9Wa0y.
[5] Kahn, B., and Uhlenbeck, G. E. 1937. On the theory of condensation. Physica, 4, 1155.Google Scholar
[6] London, F. 1938. On the Bose-Einstein condensation. Phys. Rev., 54, 947.Google Scholar
[7] London, F. 1938. The ƛ-phenomenon of liquid helium and the Bose-Einstein degeneracy. Nature, 141, 643.Google Scholar
[8] Schrödinger, E. 1952. Statistical Thermodynamics. Cambridge: Cambridge University Press, reprinted by Dover Publications (New York, 1989).
[9] Crooker, B. C., Hebral, B., Smith, E. N., Takano, Y., and Reppy, J. D. 1983. Superfluidity in a dilute Bose gas. Phys. Rev. Lett., 51, 666–669.Google Scholar
[10] Reppy, J. D. 1984. 4He as a dilute Bose gas. Physica B, 126, 335–341.Google Scholar
[11] Rasolt, M., Stephen, M. H., Fisher, M. E., and Weichman, P. B. 1984. Critical behavior of a dilute interacting Bose fluid. Phys. Rev. Lett., 53, 798.Google Scholar
[12] Cho, H., and Williams, G. A. 1995. Vortex core size in submonolayer superfluid 4He films. Phys. Rev. Lett., 75, 1562.Google Scholar
[13] Hecht, C. E. 1959. The possible superfluid behaviour of hydrogen atom gases and liquids. Physica, 25, 1159.Google Scholar
[14] Stwalley, W. C., and Nosanow, L. H. 1976. Possible “new” quantum systems. Phys. Rev. Lett., 36, 910.Google Scholar
[15] Silvera, I. F., and Walraven, J. T. M. 1980. Stabilization of atomic hydrogen at low temperature. Phys. Rev. Lett., 44, 164–168.Google Scholar
[16] Cline, R. W., Smith, D. A., Greytak, T. J., and Kleppner, D. 1980. Magnetic confinement of spin-polarized atomic hydrogen. Phys. Rev. Lett., 45, 2117.Google Scholar
[17] Fried, D. G., Killian, T. C., Willmann, L., Landhuis, D., Moss, S. C., Kleppner, D., and Greytak, T. J. 1998. Bose-Einstein condensation of atomic hydrogen. Phys. Rev. Lett., 81, 3811–3814.Google Scholar
[18] Greytak, T. J. 1995. Prospects for Bose-Einstein condensation in magnetically trapped atomic hydrogen. In Griffin, A., Snoke, D. W., and Stringari, S. (eds), Bose-Einstein Condensation. Cambridge: Cambridge University Press, pp. 131–159.
[19] Greytak, T. J., and Kleppner, D. 1984. Lectures on spin-polarized hydrogen. In Grynberg, G., and Stora, R. (eds), New Trends in Atomic Physics, Les Houches Summer School 1982. Amsterdam: North-Holland, p. 1125.
[20] Silvera, I. F., and Walraven, J. T. M. 1986. Spin-polarized atomic hydrogen. In Brewer, D. F. (ed), Progress in Low Temperature Physics, vol. X. Amsterdam: Elsevier, p. 139.
[21] Walraven, J. T. M. 1996. Atomic hydrogen in magnetostatic traps. Oppo, G. L., Barnett, S. M., Riis, E., and Wilkinson, M. (eds), Quantum Dynamics of Simple Systems. London: Institute of Physics Publ., pp. 315–352.
[22] Silvera, I. F. 1995. Spin-polarized hydrogen: prospects for Bose-Einstein condensation and two-dimensional superfluidity. In Griffin, A., Snoke, D.W., and Stringari, S. (eds), Bose-Einstein Condensation. Cambridge: Cambridge University Press, pp. 160–172.
[23] Mosk, A. P., Reynolds, M. W., Hijmans, T. W., and Walraven, J. T. M. 1998. Optical observation of atomic hydrogen in the surface of liquid helium. J. Low Temp. Phys., 113, 217–222.Google Scholar
[24] Matsubara, A., Arai, T., Hotta, S., Korhonen, J. S., Mizusaki, T., and Hiraj, A. 1995. Quest for Kosterlitz-Thouless transition in two-dimensional hydrogen. In Griffin, A., Snoke, D. W., and Stringari, S. (eds), Bose-Einstein Condensation. Cambridge: Cambridge University Press, pp. 478–486.
[25] Safonov, A. I., Vasilyev, S. A., Yasnikov, I. S., Lukashevich, I. I., and Jaakola, S. 1998. Observation of quasicondensate in two-dimensional atomic hydrogen. Phys. Rev. Lett., 81, 4545.Google Scholar
[26] Goldman, V. V., Silvera, I. F., and Leggett, A. J. 1981. Atomic hydrogen in an inhomogeneous magnetic field: density profile and Bose-Einstein condensation. Phys. Rev. B, 24, 2870–2873.Google Scholar
[27] Huse, D. A., and Siggia, E. 1982. The density distribution of a weakly interacting Bose gas in an external potential. J. Low Temp. Phys., 46, 137.Google Scholar
[28] Oliva, J. 1989. Density profile of the weakly interacting Bose gas confined in a potential well: nonzero temperature. Phys. Rev. B, 39, 4197–4203.Google Scholar
[29] Stoof, H. T. C., Koelman, J. M. V. A., and Verhaar, B. J. 1988. Spin-exchange and dipole relaxation rates in atomic hydrogen: rigorous and simplified calculations. Phys. Rev. B, 38, 4688.Google Scholar
[30] Hess, H. F. 1986. Evaporative cooling of magnetically trapped and compressed spinpolarized hydrogen. Phys. Rev. B, 34, 3476.Google Scholar
[31] Masuhara, N., Doyle, J.M., Sandberg, J. C., Kleppner, D., Greytak, T. J., Hess, H. F., and Kochanski, G. P. 1988. Evaporative cooling of spin-polarized atomic hydrogen. Phys. Rev. Lett., 61, 935–938.Google Scholar
[32] Griffin, A., Snoke, D. W., and Stringari, S. 1995. Bose-Einstein Condensation. Cambridge: Cambridge University Press.
[33] Lin, J. L., and Wolfe, J. P. 1993. Bose-Einstein condensation of paraexcitons in stressed Cu2O. Phys. Rev. Lett., 71, 1222.Google Scholar
[34] O'Hara, K. E., Silleabhin, L., and Wolfe, J. P. 1999. Strong nonradiative recombination of excitons in Cu2O. and its impact on Bose-Einstein statistics. Phys. Rev. B, 60, 10565.Google Scholar
[35] Taubes, G. 1994. Hot on the trail of a cold mystery. Science, 265, 184–186.Google Scholar
[36] Ketterle, W., Davis, K. B., Joffe, M. A., Martin, A., and Pritchard, D. E. 1993. Highdensities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett., 70, 2253–2256.Google Scholar
[37] Cornell, E. A., Monroe, C., and Wieman, C. E. 1991. Multiply loaded, AC magnetic trap for neutral atoms. Phys. Rev. Lett., 67, 2439.Google Scholar
[38] Kasevich, M. A. 1995. Evaporative cooling and Raman cooling in a crossed dipole trap. Bull. Am. Phys. Soc., 40, 1270.Google Scholar
[39] Willems, P. A., and Libbrecht, K. G. 1995. Creating long-lived neutral-atom traps in a cryogenic environment. Phys. Rev. A, 51, 1403.Google Scholar
[40] Guery-Odelin, D., Soding, J., Desbiolles, P., and Dalibard, J. 1998. Is Bose-Einstein condensation of atomic cesium possible? Europhys. Lett., 44, 25–30.Google Scholar
[41] Hijmans, T. W., Kagan, Y., Shlyapnikov, G. V., and Walraven, J. T. M. 1993. Bose condensation and relaxation explosion in magnetically trapped atomic hydrogen. Phys. Rev. B, 48, 12886–12892.Google Scholar
[42] Davis, K. B., Mewes, M.-O., Joffe, M. A., Andrews, M. R., and Ketterle, W. 1995. Evaporative cooling of sodium atoms. Phys. Rev. Lett., 74, 5202–5205.Google Scholar
[43] High, A. A., Leonard, J. R., Hammack, A. T., Fogler, M. M., Butov, L. V., Kavokin, A. V., Campman, K. L., and Gossard, A. C. 2012. Spontaneous coherence in a cold exciton gas. Nature, 483, 584–588.Google Scholar
[44] Snoke, D., and Kavoulakis, G. M. 2014. Bose-Einstein condensation of excitons in Cu2O: progress over 30 years. Rep. Prog. Phys., 77, 116501.Google Scholar
[45] Demokritov, S. O., Demidov, V. E., Dzyapko, O., Melkov, G. A., Serga, A. A., Hillebrands, B., and Slavin, A. N. 2006. Bose-Einstein condensation of quasiequilibrium magnons at room temperature under pumping. Nature, 443, 430–433.Google Scholar
[46] Klaers, J., Schmitt, J., Vewinger, F., and Weitz, M. 2010. Bose-Einstein condensation of photons in an optical microcavity. Nature, 468, 545–548.Google Scholar
[47] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., Marchetti, F. M., Szymanska, M. H., Andre, R., Staehli, J. L., Savona, V., Littlewood, P. B., Deveaud, B., and Dang, L. S. 2006. Bose-Einstein condensation of exciton polaritons. Nature, 443, 409–414.Google Scholar
[48] Lagoudakis, K. G., Wouters, M., Richard, M., Baas, A., Carusotto, I., Andre, R., Dang, L. S., and Deveaud-Pledran, B. 2008. Quantized vortices in an excitonpolariton condensate. Nat Phys, 4, 706–710.Google Scholar
[49] Sanvitto, D., Marchetti, F. M., Szymanska, M. H., Tosi, G., Baudisch, M., Laussy, F. P., Krizhanovskii, D. N., Skolnick, M. S., Marrucci, L., Lemaitre, A., Bloch, J., Tejedor, C., and Vina, L. 2010. Persistent currents and quantized vortices in a polariton superfluid. Nat Phys, 6, 527–533.Google Scholar
[50] Lagoudakis, K. G., Ostatnick, T., Kavokin, A. V., Rubo, Y. G., Andr, R., and Deveaud-Pledran, B. 2009. Observation of half-quantum vortices in an excitonpolariton condensate. Science, 326, 974–976.Google Scholar
[51] Amo, A., Lefrere, J., Pigeon, S., Adrados, C., Ciuti, C., Carusotto, I., Houdre, R., Giacobino, E., and Bramati, A. 2009. Superfluidity of polaritons in semiconductor microcavities. Nat Phys, 5, 805–810.Google Scholar
[52] Abbarchi, M., Amo, A., Sala, V. G., Solnyshkov, D. D., Flayac, H., Ferrier, L., Sagnes, I., Galopin, E., Lemaitre, A., Malpuech, G., and Bloch, J. 2013. Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons. Nat Phys, 9, 275–279.Google Scholar
[53] Sun, Y., Wen, P., Yoon, Y., Liu, G., Steger, M., Pfeiffer, L. N., West, K., Snoke, D.W., and Nelson, K. A. 2017. Bose-Einstein condensation of long-lifetime polaritons in thermal equilibrium. Phys. Rev. Lett., 118, 016602.Google Scholar
[54] Borovik-Romanov, A. S., Bunkov, Y. M., Dmitriev, V. V., and Mukharskiy, Y. M. 1984. Long-lived induction signal in superfluid 3He-B. JETP Lett., 40, 1033.Google Scholar
[55] Bunkov, Y. M., and Volovik, G. E. 2007. Bose-Einstein condensation of magnons in superfluid 3He. J. Low Temp. Phys., 150, 135–144.Google Scholar
[56] Nikuni, T., Oshikawa, M., Oosawa, A., and Tanaka, H. 2000. Bose-Einstein condensation of dilute magnons in TlCuCl3. Phys. Rev. Lett., 84, 5868–5871.Google Scholar
[57] Ruegg, C., Cavadini, N., Furrer, A., Gudel, H. U., Kramer, K., Mutka, H., Wildes, A., Habicht, K., and Vorderwisch, P. 2003. Bose-Einstein condensation of the triplet states in the magnetic insulator TlCuCl3. Nature, 423, 62–65.Google Scholar
[58] Giamarchi, T., Ruegg, C., and Tchernyshyov, O. 2008. Bose-Einstein condensation in magnetic insulators. Nat Phys, 4, 198–204.Google Scholar
[59] Volovik, G. E. 2008. Twenty years of magnon Bose condensation and spin current superfluidity in 3He-B. J. Low Temp. Phys., 153, 266–284.Google Scholar
[60] Kohn, W., and Sherrington, D. 1970. Two kinds of bosons and Bose condensates. Rev. Mod. Phys., 42, 1–11.Google Scholar
[61] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1995. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269, 198–201.Google Scholar
[62] Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., and Ketterle, W. 1995. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969–3973.Google Scholar
[63] Bradley, C. C., Sackett, C. A., and Hulet, R. G. 1997. Bose-Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett., 78, 985–989.Google Scholar
[64] Bradley, C. C., Sackett, C. A., Tollet, J. J., and Hulet, R. G. 1995. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75, 1687–1690.Google Scholar
[65] Andrews, M. R., Townsend, C. G., Miesner, H.-J., Durfee, D. S., Kurn, D. M., and Ketterle, W. 1997. Observation of interference between two Bose condensates. Science, 275, 637–641.Google Scholar
[66] Hall, D. S., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1998. Measurements of relative phase in two-component Bose-Einstein condensates. Phys. Rev. Lett., 81, 1543–1546.Google Scholar
[67] Han, D. J., Wynar, R. H., Courteille, P., and Heinzen, D. J. 1998. Bose-Einstein condensation of large numbers of atoms in a magnetic time-averaged orbiting potential trap. Phys. Rev. A, 57, R4114.Google Scholar
[68] Hau, L. V., Busch, B. D., Liu, C., Dutton, Z., Burns, M. M., and Golovchenko, J. A. 1998. Near resonant spatial images of confined Bose-Einstein condensates in the “4D” magnetic bottle. Phys. Rev. A, 58, R54.Google Scholar
[69] Anderson, B. P., and Kasevich, M. A. 1998. Macroscopic quantum interference from atomic tunnel arrays. Science, 282, 1686.Google Scholar
[70] Ernst, U., Marte, A., Schreck, F., Schuster, J., and Rempe, G. 1998. Bose-Einstein condensation in a pure Ioffe-Pritchard field configuration. Europhys. Lett., 41, 1–6.Google Scholar
[71] Stwalley, W. C. 1976. Stability of spin-aligned hydrogen at low temperatures and high magnetic fields: new field-dependent scattering resonances and predissociations. Phys. Rev. Lett., 37, 1628.Google Scholar
[72] Tiesinga, E., Verhaar, B. J., and Stoof, H. T. C. 1993. Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A, 47, 4114–4122.Google Scholar
[73] Chin, C., Grimm, R., Julienne, P., and Tiesinga, E. 2010. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82, 1225–1286.Google Scholar
[74] Inouye, S., Andrews, M. R., Stenger, J., Miesner, H.-J., Stamper-Kurn, D. M., and Ketterle, W. 1998. Observation of Feshbach resonances in a Bose-Einstein condensate. Nature, 392, 151–154.Google Scholar
[75] Courteille, P., Freeland, R. S., Heinzen, D. J., van Abeelen, F. A., and Verhaar, B. J. 1998. Observation of a Feshbach resonance in cold atom scattering. Phys. Rev. Lett., 81, 69–72.Google Scholar
[76] Stenger, J., Inouye, S., Andrews, M. R., Miesner, H.-J., Stamper-Kurn, D. M., and Ketterle, W. 1999. Strongly enhanced inelastic collisions in a Bose-Einstein condensate near Feshbach resonances. Phys. Rev. Lett., 82, 2422–2425.Google Scholar
[77] Navon, N., Piatecki, S., Günter, K., Rem, B., Nguyen, T. C., Chevy, F., Krauth, W., and Salomon, C. 2011. Dynamics and thermodynamics of the low-temperature strongly interacting Bose gas. Phys. Rev. Lett., 107, 135301.Google Scholar
[78] Makotyn, P., Klauss, C. E., Goldberger, D. L., Cornell, E. A., and Jin, D. S. 2014. Universal dynamics of a degenerate unitary Bose gas. Nat Phys, 10, 116–119.Google Scholar
[79] Cubizolles, J., Bourdel, T., Kokkelmans, S. J. J. M, F., Shlyapnikov, G. V., and Salomon, C. 2003. Production of long-lived ultracold Li2 molecules from a Fermi gas. Phys. Rev. Lett., 91, 240401.Google Scholar
[80] Petrov, D. S., Salomon, C., and Shlyapnikov, G. V. 2004. Weakly bound dimers of fermionic atoms. Phys. Rev. Lett., 93, 090404.Google Scholar
[81] Pollack, S. E., Dries, D., Junker, M., Chen, Y. P., Corcovilos, T. A., and Hulet, R. G. 2009. Extreme tunability of interactions in a 7Li Bose-Einstein condensate. Phys. Rev. Lett., 102, 090402.Google Scholar
[82] Newbury, N. R., Myatt, C. J., and Wieman, C. E. 1995. s-wave elastic collisions between cold ground-state 87Rb atoms. Phys. Rev. A, 51, R2680.Google Scholar
[83] Maier, T., Kadau, H., Schmitt, M., Wenzel, M., Ferrier-Barbut, I., Pfau, T., Frisch, A., Baier, S., Aikawa, K., Chomaz, L., Mark, M. J., Ferlaino, F., Makrides, C., Tiesinga, E., Petrov, A., and Kotochigova, S. 2015. Emergence of chaotic scattering in ultracold Er and Dy. Phys. Rev. X, 5, 041029.Google Scholar
[84] Donley, E. A., Claussen, N. R., Cornish, S. L., Roberts, J. L., Cornell, E. A., and Wieman, C. E. 2001. Dynamics of collapsing and exploding Bose-Einstein condensates. Nature, 412, 295–299.
[85] Weber, T., Herbig, J., Mark, M., Nägerl, H.-C., and Grimm, R. 2003. Bose-Einstein condensation of cesium. Science, 299, 232–235.Google Scholar
[86] Jin, D. S., and Regal, C. A. 2008. Fermi gas experiments. In Inguscio, M., Ketterle, W., and Salomon, C. (eds), Ultracold Fermi Gases, Proceedings of the International School of Physics Enrico Fermi, Course CLXIV. Amsterdam: IOS Press, pp. 1–51.
[87] Ketterle, W., and Zwierlein, M. W. 2008. Making, probing and understanding ultracold Fermi gases. In Inguscio, M., Ketterle, W., and Salomon, C. (eds), Ultracold Fermi Gases, Proceedings of the International School of Physics Enrico Fermi, Course CLXIV. Amsterdam: IOS Press, pp. 95–287.Google Scholar
[88] Nascimbne, S., Navon, N., Jiang, K. J., Chevy, F., and Salomon, C. 2010. Exploring the thermodynamics of a universal Fermi gas. Nature, 463, 1057–1060.Google Scholar
[89] Ku, M. J. H., Sommer, A. T., Cheuk, L. W., and Zwierlein, M. W. 2012. Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science, 335, 563–567.Google Scholar
[90] Bloch, I., Dalibard, J., and Zwerger, W. 2008. Many-body physics with ultracold gases. Rev. Mod. Phys., 80, 885–880.Google Scholar
[91] Takasu, Y., Maki, K., Komori, K., Takano, T., Honda, K., Kumakura, M., Yabuzaki, T., and Takahashi, Y. 2003. Spin-singlet Bose-Einstein condensation of two-electron atoms. Phys. Rev. Lett., 91, 040404.Google Scholar
[92] Barrett, M. D., Sauer, J. A., and Chapman, M. S. 2001. All-optical formation of an atomic Bose-Einstein condensate. Phys. Rev. Lett., 87, 010404–4.Google Scholar
[93] Stamper-Kurn, D. M., and Ueda, M. 2013. Spinor Bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys., 85, 1191–1244.Google Scholar
[94] Stellmer, S., Pasquiou, B., Grimm, R., and Schreck, F. 2013. Laser cooling to quantum degeneracy. Phys. Rev. Lett., 110, 263003.Google Scholar
[95] Aikawa, K., Frisch, A., Mark, M., Baier, S., Grimm, R., and Ferlaino, F. 2014. Reaching Fermi degeneracy via universal dipolar scattering. Phys. Rev. Lett., 112, 010404.Google Scholar
[96] Doret, S. C., Connolly, C. B., Ketterle, W., and Doyle, J. M. 2009. Buffer-gas cooled Bose-Einstein condensate. Phys. Rev. Lett., 103, 103005.Google Scholar
[97] Abo-Shaeer, J. R., Raman, C., and Ketterle, W. 2002. Formation and decay of vortex lattices in Bose-Einstein condensates at finite temperatures. Phys. Rev. Lett., 88, 070409.Google Scholar
[98] van der Stam, K. M. R., van Ooijen, E. D., Meppelink, R., Vogels, J. M., and van der Straten, P. 2007. Large atom number Bose-Einstein condensate of sodium. Rev. Sci. Inst., 78, 013102.Google Scholar
[99] Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S., and Greiner, M. 2009. A quantum gas microscope for detecting single atoms in a Hubbard regime optical lattice. Nature, 462, 74–77.Google Scholar
[100] Ketterle, W., Durfee, D. S., and Stamper-Kurn, D. M. 1999. Making, probing and understanding Bose-Einstein condensates. In Inguscio, M., Stringari, S., and Wieman, C. E. (eds), Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics Enrico Fermi, Course CXL. Amsterdam: IOS Press, pp. 67–176.
[101] Bloch, I., Dalibard, J., and Nascimbene, S. 2012. Quantum simulations with ultracold quantum gases. Nature Physics, 9, 267–276.Google Scholar
[102] Goldman, N., Juzelinas, G., Öhberg, P., and Spielman, I. B. 2014. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys., 77, 126401.
[103] Kennedy, C. J., Burton, W. C., Chung, W. C., and Ketterle, W. 2015. Observation of Bose-Einstein condensation in a strong synthetic magnetic field. Nature Physics, 11, 859–864.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×