Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T11:53:56.271Z Has data issue: false hasContentIssue false

19 - Bose-Einstein Condensation of Photons and Grand-Canonical Condensate Fluctuations

from Part IV - Condensates in Condensed Matter Physics

Published online by Cambridge University Press:  18 May 2017

J. Klaers
Affiliation:
Institut für Angewandte Physik, Universität Bonn, Wegelerstr
M. Weitz
Affiliation:
Institut für Angewandte Physik, Universität Bonn, Wegelerstr
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

We review recent experiments on the Bose-Einstein condensation of photons in a dye-filled optical microresonator. The most well-known example of a photon gas, photons in blackbody radiation, does not show Bose-Einstein condensation. Instead of massively populating the cavity ground mode, photons vanish in the cavity walls when they are cooled down. The situation is different in an ultrashort optical cavity imprinting a low-frequency cutoff on the photon energy spectrum that is well above the thermal energy. The latter allows for a thermalization process in which both temperature and photon number can be tuned independently of each other or, correspondingly, for a nonvanishing photon chemical potential. We here describe experiments demonstrating the fluorescence-induced thermalization and Bose-Einstein condensation of a two-dimensional photon gas in the dye microcavity. Moreover, recent measurements on the photon statistics of the condensate, showing Bose-Einstein condensation in the grand-canonical ensemble limit, will be reviewed.

Introduction

Quantum statistical effects become relevant when a gas of particles is cooled, or its density is increased, to the point where the associated de Broglie wavepackets spatially overlap. For particles with integer spin (bosons), the phenomenon of Bose-Einstein condensation (BEC) then leads to macroscopic occupation of a single quantum state at finite temperatures [1]. Bose-Einstein condensation in the gaseous case was first achieved in 1995 by laser and subsequent evaporative cooling of a dilute cloud of alkali atoms [2, 3, 4], as detailed in Chapter 3 of this volume. The condensate atoms can be described by a macroscopic singleparticle wavefunction, similar to the case of liquid helium [1]. Bose-Einstein condensation has also been observed for exciton-polaritons, which are hybrid states of matter and light [5, 6, 7] (see Chapter 4), magnons [8] (see Chapter 25), and other physical systems. Other than material particles, photons usually do not show Bose-Einstein condensation [9]. In blackbody radiation, the most common Bose gas, photons at low temperature disappear, instead of condensing to a macroscopically occupied ground-state mode. In this system, photons have a vanishing chemical potential, meaning that the number of photons is determined by the available thermal energy and cannot be tuned independently from temperature.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Leggett, A. J. 2006. Quantum Liquids. Oxford University Press, Oxford.
[2] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1995. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269, 198.Google Scholar
[3] Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten, N. J., Durfee, D. M., Kurn, D. M., and Ketterle, W. 1995. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969.Google Scholar
[4] Bradley, C. C., Sackett, C. A., and Hulet, R. G. 1997. Bose-Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett., 78, 985.Google Scholar
[5] Deng, H., Weihs, G., Santori, C., Bloch, J., and Yamamoto, Y. 2002. Condensation of semiconductor microcavity exciton polaritons. Science, 298, 199.Google Scholar
[6] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., Marchetti, F. M., Szymanska, M. H., Andre, R., Staehli, J. L., Savona, V., Littlewood, P. B., Deveaud, B., and Dang, L. S. 2006. Bose-Einstein condensation of exciton polaritons. Nature, 443, 409.Google Scholar
[7] Balili, R., Hartwell, V., Snoke, D., and Pfeiffer, L. 2007. Bose-Einstein condensation of microcavity polaritons in a trap. Science, 316, 1007.Google Scholar
[8] Demokritov, S. O., Demidov, V. E., Dzyapko, O., Melkov, G. A., Serga, A. A., Hillebrands, B., and Slavin, A. N. 2006. Bose-Einstein condensation of quasiequilibrium magnons at room temperature under pumping. Nature, 443, 430.Google Scholar
[9] Huang, K. 1987. Statistical Mechanics. Wiley, New York.
[10] Zel'dovich, Y. B., and Levich, E. V. 1969. Bose condensation and shock waves in photon spectra. Sov. Phys. JETP, 28, 1287.Google Scholar
[11] Chiao, R.Y. 2000. Bogoliubov dispersion relation for a “photon fluid”: is this a superfluid? Opt. Commun., 179, 157.Google Scholar
[12] Mitchell, M. W., Hancox, C. I., and Chiao, R. Y. 2000. Dynamics of atom-mediated photon–photon scattering. Phys. Rev. A, 62, 043819.Google Scholar
[13] Amo, A., Sanvitto, D., Laussy, F. P., Ballarini, D., Del Valle, E., Martin, M. D., Lemaitre, A., Bloch, J., Krizhanovskii, D. N., Skolnick, M. S., C., Tejedor, and L., Vina. 2009a. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature, 457, 291.Google Scholar
[14] Amo, A., Lefrère, J., Pigeon, S., Adrados, C., Ciuti, C., Carusotto, I., Houdré, R., Giacobino, E., and Bramati, A. 2009b. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys., 5, 805.Google Scholar
[15] Sun, C., Jia, S., Barsi, C., Rica, S., Picozzi, A., and Fleischer, J.W. 2012. Observation of the kinetic condensation of classical waves. Nat. Phys., 8, 470.Google Scholar
[16] Klaers, J., Schmitt, J., Vewinger, F., and Weitz, M. 2010. Bose-Einstein condensation of photons in an optical microcavity. Nature, 468, 545.Google Scholar
[17] Marelic, J., and Nyman, R. A. 2015. Experimental evidence for inhomogeneous pumping and energy-dependent effects in photon Bose-Einstein condensation. Phys. Rev. A, 91, 033813.Google Scholar
[18] Angelis E., De, Martini F., De, and Mataloni, P. 2000. Microcavity quantum superradiance. J. Opt. B – Quantum S. O., 2, 149.Google Scholar
[19] Yokoyama, H., and Brorson, S. D. 1989. Rate equation analysis of microcavity lasers. J. Appl. Phys., 66, 4801.Google Scholar
[20] Klaers, J., Vewinger, F., and Weitz, M. 2010. Thermalization of a two-dimensional photonic gas in a “white-wall” photon box. Nat. Phys., 6, 512.Google Scholar
[21] Bagnato, V., and Kleppner, D. 1991. Bose-Einstein condensation in low-dimensional traps. Phys. Rev. A, 44, 7439.Google Scholar
[22] Klaers, J., Schmitt, J., Damm, T., Vewinger, F., and Weitz, M. 2012. Statistical physics of Bose-condensed light in a dye microcavity. Phys. Rev. Lett, 108, 160403.Google Scholar
[23] Sob'yanin, D. N. 2012. Hierarchical maximum entropy principle for generalized superstatistical systems and Bose-Einstein condensation of light. Phys. Rev. E, 85, 061120.Google Scholar
[24] Kirton, P., and Keeling, J. 2013. Nonequilibrium model of photon condensation. Phys. Rev. Lett., 111, 100404.Google Scholar
[25] Snoke, D. W., and Girvin, S. M. 2013. Dynamics of phase coherence onset in Bose condensates of photons by incoherent phonon emission. J. Low Temp. Phys., 171, 1.Google Scholar
[26] de Leeuw, A.-W., and Duine, H. T. C., and Stoof, R. A. 2013. Schwinger-Keldysh theory for Bose-Einstein condensation of photons in a dye-filled optical microcavity. Phys. Rev. A, 88, 033829.Google Scholar
[27] Nyman, R. A., and Szymańska, M. H. 2014. Interactions in dye-microcavity photon condensates and the prospects for their observation. Phys. Rev. A, 89, 033844.Google Scholar
[28] Kruchkov, A. 2014. Bose-Einstein condensation of light in a cavity. Phys. Rev. A, 89, 033862.Google Scholar
[29] Strinati, M. C., and Conti, C. 2014. Bose-Einstein condensation of photons with nonlocal nonlinearity in a dye-doped graded-index microcavity. Phys. Rev. A, 90, 043853.Google Scholar
[30] de Leeuw, A.-W., van der Wurff, E. C. I., Duine, R. A., and Stoof, H. T. C. 2014. Phase diffusion in a Bose-Einstein condensate of light. Phys. Rev. A, 90, 043627.Google Scholar
[31] Sela, E., Rosch, A., and Fleurov, V. 2014. Condensation of photons coupled to a Dicke field in an optical microcavity. Phys. Rev. A, 89, 043844.Google Scholar
[32] van der Wurff, E.C.I., de Leeuw, A.-W., Duine, R.A., and Stoof, H.T.C. 2014. Interaction effects on number fluctuations in a Bose-Einstein condensate of light. Phys. Rev. Lett., 113, 135301.Google Scholar
[33] Lakowicz, J. R. 1999. Principles of Fluorescence Spectroscopy. Kluwer Academic, New York.
[34] Kennard, E. H. 1918. On the thermodynamics of fluorescence. Phys. Rev., 11, 29.Google Scholar
[35] Kennard, E. H. 1927. The excitation of fluorescence in fluorescein. Phys. Rev., 29, 466.Google Scholar
[36] Stepanov, B. I. 1957. Universal relation between the absorption spectra and luminescence spectra of complex molecules. Dokl. Akad. Nauk. SSSR+, 112, 839.Google Scholar
[37] Kazachenko, L. P., and Stepanov, B. I. 1957. Mirror symmetry and the shape of absorption and luminescence bands of complex molecules. Opt. Spektrosk., 2, 339.Google Scholar
[38] McCumber, D. E. 1964. Einstein relations connecting broadband emission and absorption spectra. Phys. Rev., 136, A954.Google Scholar
[39] Klaers, J. 2014. The thermalization, condensation and flickering of photons. J. Phys. B: At. Mol. Opt., 47, 243001.Google Scholar
[40] Cornell, E. A., and Wieman, C. E. 2002. Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys., 74, 875.Google Scholar
[41] Ketterle, W. 2002. Nobel lecture: when atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys, 74, 1131.Google Scholar
[42] Lee, M. D., and Gardiner, C. W. 2000. Quantum kinetic theory. VI. The growth of a Bose-Einstein condensate. Phys. Rev. A, 62, 033606.Google Scholar
[43] Deng, H., Press, D., Götzinger, S., Solomon, G. S., Hey, R., Ploog, K. H., and Yamamoto, Y. 2006. Quantum degenerate exciton-polaritons in thermal equilibrium. Phys. Rev. Lett., 97, 146402.Google Scholar
[44] Kasprzak, J., Solnyshkov, D. D., Andre, R., Dang, L. S., and Malpuech, G. 2008. Formation of an exciton polariton condensate: thermodynamic versus kinetic regimes. Phys. Rev. Lett., 101, 146404.Google Scholar
[45] Wouters, M., Carusotto, I., and Ciuti, C. 2008. Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates. Phys. Rev. B, 77, 115340.Google Scholar
[46] Schmitt, Julian, Damm, Tobias, Dung, David, Vewinger, Frank, Klaers, Jan, and Weitz, Martin. 2015. Thermalization kinetics of light: from laser dynamics to equilibrium condensation of photons. Phys. Rev. A, 92, 011602.Google Scholar
[47] Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B., and Dalibard, J. 2006. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature, 441, 1111.Google Scholar
[48] Clade, P., Ryu, C., Ramanathan, A., Helmerson, K., and Phillips, W. D. 2009. Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. Phys. Rev. Lett., 102, 170401.Google Scholar
[49] Hadzibabic, Z., and Dalibard, J. 209. Two-dimensional Bose fluids: an atomic physics perspective. Lecture Notes from the Varenna Summer School 23 June–3 July 2009. Published in Proceedings of the International School of Physics “Enrico Fermi,” Course CLXXIII, “Nano optics and atomics: transport of light and matter waves.” Editors R., Kaiser, D., Wiersma, and L., Fallani. IOS Press, Amsterdam, and SIF, Bologna, 273.
[50] Klaers, J., Schmitt, J., Damm, T., Vewinger, F., and Weitz, M. 2011. Bose-Einstein condensation of paraxial light. Appl. Phys. B, 105, 17.Google Scholar
[51] Huang, K. 2001. Introduction to Statistical Physics. CRC Press, Boca Raton.
[52] Ziff, R. M., Uhlenbeck, G. E., and Kac, M. 1977. Ideal Bose-Einstein gas, revisited. Phys. Rep., 32, 169.Google Scholar
[53] Kocharovsky, V. V., Kocharovsky, V. V., Holthaus, M., Ooi C. H., Raymond, Svidzinsky, A. A., Ketterle, W., and Scully, M. O. 2006. Fluctuations in ideal and interacting Bose-Einstein condensates: from the laser phase transition analogy to squeezed states and Bogoliubov quasiparticles. Adv. Atom. Mol. Opt. Phy., 53, 291.Google Scholar
[54] Fierz, M. 1955. Über die statistischen Schwankungen in einem kondensierenden System. Helv. Phys. Acta, 29, 47.Google Scholar
[55] Grossmann, S., and Holthaus, M. 1996. Microcanonical fluctuations of a Bose system's ground state occupation number. Phys. Rev. E, 54, 3495.Google Scholar
[56] Holthaus, M., Kalinowski, E., and Kirsten, K. 1998. Condensate fluctuations in trapped Bose gases: canonical vs. microcanonical ensemble. Ann. Phys. (NY), 270, 198.Google Scholar
[57] Fujiwara, I., ter Haar, D., and Wergeland, H. 1970. Fluctuations in the population of the ground state of Bose systems. J. Stat. Phys., 2, 329.Google Scholar
[58] Politzer, H. D. 1996. Condensate fluctuations of a trapped, ideal Bose gas. Phys. Rev. A, 54, 5048.Google Scholar
[59] Navez, P., Bitouk, D., Gajda, M., Idziaszek, Z., and Rzazewski, K. 1997. Fourth statistical ensemble for the Bose-Einstein condensate. Phys. Rev. Lett., 79, 1789.Google Scholar
[60] Grossmann, S., and Holthaus, M. 1997. Maxwell's demon at work: two types of Bose condensate fluctuations in power-law traps. Opt. Express, 1, 262.Google Scholar
[61] Weiss, C., and Wilkens, M. 1997. Particle number counting statistics in ideal Bose gases. Opt. Express, 1, 272.Google Scholar
[62] Weiss, C., Page, S., and Holthaus, M. 2004. Factorising numbers with a Bose-Einstein condensate. Physica A, 341, 586.Google Scholar
[63] Scully, M. O., and Lamb, W. E. 1967. Quantum theory of an optical maser. I. General theory. Phys. Rev., 159, 208.Google Scholar
[64] Schmitt, J., Damm, T., Dung, D., Vewinger, F., Klaers, J., and Weitz, M. 2014. Observation of grand-canonical number statistics in a photon Bose-Einstein condensate. Phys. Rev. Lett., 112, 030401.Google Scholar
[65] Ciuti, C. 2014. Statistical flickers in a Bose-Einstein condensate of photons. Physics, 7, 7.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×