Skip to main content Accessibility help
  • Print publication year: 2017
  • Online publication date: May 2017

10 - Berezinskii-Kosterlitz-Thouless Phase of a Driven-Dissipative Condensate

from Part II - General Topics


Microcavity exciton-polaritons are interacting Bose particles which are confined in a two-dimensional (2D) system suitable for studying coherence properties in an inherently nonequilibrium condition. A primary question of interest here is whether a true long-range order exists among the 2D exciton-polaritons in a driven open system. We give an overview of theoretical and experimental works concerning this question, and we summarize the current understanding of coherence properties in the context of Berezinskii-Kosterlitz-Thouless transition.


Strange but striking phenomena, which are accessed by advanced experimental techniques, become a fuel to stimulate both experimental and theoretical research. Experimentalists concoct new tools for sophisticated measurements, and theorists establish models in order to explain the surprising observation, ultimately expanding our knowledge boundary. A classic example of the seed to the knowledge expansion is the feature of abnormally high heat conductivity in liquid helium reported by Kapitza and Allen's group, who used cryogenic liquefaction techniques in 1938 [1, 2]. It is a precursor to a “resistance-less flow” a new phase of matter, coined as superfluidity in the He-II phase. Immediately after this discovery, London conceived a brilliant insight between superfluidity and Bose-Einstein condensation (BEC) of noninteracting ideal Bose gases [3], which has led to establish the concept of coherence as off-diagonal long-range order emerging in the exotic states of matter. Since then, it is one of the core themes in equilibrium Bose systems to elucidate the intimate link of superfluidity and BEC in natural and artificial materials, where dimensionality and interaction play a crucial role in determining the system phase.

Let us consider the noninteracting ideal Bose gases whose particle number N is fixed in a three-dimensional box with a volume V. According to the Bose-Einstein statistics, the average occupation number Ni in the state i with energy is given by with the chemical potential and a temperature parameter (Boltzmann constant kB and temperature T). For the positive real number of is restricted to be smaller than, and the ground-state particle number N0 diverges as approaches the lowest energy. Its thermodynamic phase transition refers to BEC, in which the macroscopic occupation in the ground state is represented by the classical field operator, where is the particle density and is the phase.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Universal Themes of Bose-Einstein Condensation
  • Online ISBN: 9781316084366
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
[1] Allen, J. F., and Misener, A. D. 1938. Flow of liquid helium II. Nature, 141, 75.
[2] Kapitza, P. 1938. Viscosity of liquid helium below the ƛ-point. Nature, 141, 74.
[3] London, F. 1938. The ƛ-phenomenon of liquid helium and the Bose-Einstein degeneracy. Nature, 141, 643–644.
[4] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1995. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269, 198–201.
[5] Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., and Ketterle, W. 1995. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969–3973.
[6] Mermin, N. D., and Wagner, H. 1966. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17, 1133–1136.
[7] Hohenberg, P. C. 1967. Existence of long-range order in one and two dimensions. Phys. Rev., 158, 383–386.
[8] Berezinskii, V. L. 1972. Destruction of long-range order in one-dimensional and twodimensional systems possessing a continuous symmetry group. II. Quantum systems. Soviet Journal of Experimental and Theoretical Physics, 34, 610–616.
[9] Kosterlitz, J. M., and Thouless, D. J. 1973. Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C Solid State Physics, 6, 1181–1203.
[10] Fletcher, R. J., Robert-de Saint-Vincent, M., Man, J., Navon, N., Smith, R. P., Viebahn, K. G. H., and Hadzibabic, Z. 2015. Connecting Berezinskii-Kosterlitz-Thouless and BEC phase transitions by tuning interactions in a trapped gas. Phys. Rev. Lett., 114, 255302.
[11] Hadzibabic, Z., and Dalibard, J. 2011. Two-dimensional Bose fluids: an atomic physics perspective. Riviesta del Nuovo Cimento, 34, 389–433.
[12] Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B., and Dalibard, J. 2006. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature, 441, 1118–1121.
[13] Leggett, A. J. 1999. Superfluidity. Rev. Mod. Phys., 71, S318–S323.
[14] Landau, L. D., and Lifshitz, E. M. 1959. Fluid Mechanics. Pergamon Press.
[15] Amo, A., Lefrère, J., Pigeon, S., Adrados, C., Ciuti, C., Carusotto, I., Houdré, R., Giacobino, E., and Bramati, A. 2009. Superfluidity of polaritons in semiconductor microcavities. Nature Physics, 5, 805–810.
[16] Amo, A., Pigeon, S., Sanvitto, D., Sala, V. G., Hivet, R., Carusotto, I., Pisanello, F., Leménager, G., Houdré, R., Giacobino, E., Ciuti, C., and Bramati, A. 2011. Polariton superfluids reveal quantum hydrodynamic solitons. Science, 332, 1167–1170.
[17] Kavokin, A., Baumberg, J. J., Malpuech, G., and Laussy, F. P. 2011. Microcavities. Oxford Science Publications. Oxford University Press.
[18] Bishop, D. J., and Reppy, J. D. 1978. Study of the superfluid transition in twodimensional 4He films. Phys. Rev. Lett., 40, 1727–1730.
[19] Hebard, A. F., and Fiory, A. T. 1980. Evidence for the Kosterlitz-Thouless transition in thin superconducting aluminum films. Phys. Rev. Lett., 44, 291–294.
[20] Small, Eran, Pugatch, Rami, and Silberberg, Yaron. 2011. Berezinskii-Kosterlitz-Thouless crossover in a photonic lattice. Phys. Rev. A, 83, 013806.
[21] Bishop, D. J., and Reppy, J. D. 1980. Study of the superfluid transition in twodimensional 4He films. Phys. Rev., 22, 5171–5185.
[22] Beasley, M. R., Mooij, J. E., and Orlando, T. P. 1979. Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett., 42, 1165– 1168.
[23] Gabay, Marc, and Kapitulnik, Aharon. 1993. Vortex–antivortex crystallization in thin superconducting and superfluid films. Phys. Rev. Lett., 71, 2138–2141.
[24] Regnault, L. P., and Rossat-Mignod, J. 1990. Magnetic Properties of Layered Transition Metal Compounds. Physics and Chemistry of Materials with Low-Dimensional Structures, vol. 9. Kluwer Academic Publishers. Chap. Phase transitions in quasi-twodimensional planar magnets, pages 271–321.
[25] Tutsch, U., Wolf, B., Wessle, S., Postulka, L., Tsui, Y., Jeschke, H.O., Opahle, I., Saha-Dasgupta, T., Valenti, R., Bruhl, A., Removic-Langer, K., Kretz, T., Lerner, H.-W., Wagner, M., and Lang, M. 2014. Evidence of a field-induced Berezinskii- Kosterlitz-Thouless scenario in a two-dimensional spin-dimer system. Nature Comm., 5, 5169.
[26] Situ, G., Muenzel, S., and Fleischer, J. W. 2013. Berezinskii-Kosterlitz-Thouless transition in a photonic lattice. arXiv:1304.6980, Apr.
[27] Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K., and Phillips, W. D. 2009. Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. Phys. Rev. Lett., 102, 170401.
[28] Campbell, G. K. 2012. Quantum gases: superfluidity goes 2D. Nature Physics, 8, 643–644.
[29] Desbuquois, R., Chomaz, L., Yefsah, T., Léonard, J., Beugnon, J., Weitenberg, C., and Dalibard, J. 2012. Superfluid behaviour of a two-dimensional Bose gas. Nature Physics, 8, 645–648.
[30] Choi, J.-y., Seo, S.W., and Shin, Y.-i. 2013. Observation of thermally activated vortex pairs in a quasi-2D Bose gas. Phys. Rev. Lett., 110, 175302.
[31] Weisbuch, C., Nishioka, M., Ishikawa, A., and Arakawa, Y. 1992. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69, 3314–3317.
[32] Deng, H., Haug, H., and Yamamoto, Y. 2010. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys., 82, 1489–1537.
[33] Byrnes, T. Kim, N. Y., and Yamamoto, Y. 2014. Exciton-polariton condensates. Nature Physics, 10, 803–813.
[34] Szymánska, M. H., Keeling, J., and Littlewood, P. B. 2007. Mean-field theory and fluctuation spectrum of a pumped decaying Bose-Fermi system across the quantum condensation transition. Phys. Rev. B, 75, 195331.
[35] Utsunomiya, S., Tian, L., Roumpos, G., Lai, C. W., Kumada, N., Fujisawa, T., Kuwata-Gonokami, M., Löffler, A., Höfling, S., Forchel, A., and Yamamoto, Y. 2008. Observation of Bogoliubov excitations in exciton-polariton condensates. Nature Physics, 4, 700–705.
[36] Lagoudakis, K. G., Wouters, M., Richard, M., Baas, A., Carusotto, I., André, R., Dang, L. S., and Deveaud-Plédran, B. 2008. Quantized vortices in an excitonpolariton condensate. Nature Physics, 4, 706.
[37] Roumpos, G., Fraser, M. D., Löffler, A., Höfling, S., Forchel, A., and Yamamoto, Y. 2011. Single vortex–antivortex pair in an exciton-polariton condensate. Nature Physics, 7, 129–133.
[38] Szymánska, M. H., Keeling, J., and Littlewood, P. B. 2006. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett., 96, 230602.
[39] Tsyplyatyev, O., and Whittaker, D. M. 2012. Spatial coherence of a polariton condensate in 1D acoustic lattice. Physica Status Solidi B Basic Research, 249, 1692– 1697.
[40] Altman, Ehud, Sieberer, Lukas M., Chen, Leiming, Diehl, Sebastian, and Toner, John. 2015. Two-dimensional superfluidity of exciton polaritons requires strong anisotropy. Phys. Rev. X, 5, 011017.
[41] Chiocchetta, A., and Carusotto, I. 2013. Non-equilibrium quasi-condensates in reduced dimensions. Europhysics Letters, 102, 67007.
[42] Dagvadorj, G., Fellows, J. M., Matyjáskiewicz, S., Marchetti, F. M., Carusotto, I., and Szymánska, M. H. 2015. Nonequilibrium phase transition in a two-dimensional driven open quantum system. Phys. Rev. X, 5, 041028.
[43] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., Marchetti, F. M., Szymánska, M. H., André, R., Staehli, J. L., Savona, V., Littlewood, P. B., Deveaud, B., and Dang, L. S. 2006. Bose-Einstein condensation of exciton polaritons. Nature, 443, 409–414.
[44] Roumpos, G., Lohse, M., Nitsche, W. H., Keeling, J., Szymánska, M. H., Littlewood, P. B., Löffler, A., Höfling, S., Worschech, L., Forchel, A., and Yamamoto, Y. 2012. Power-law decay of the spatial correlation function in exciton-polariton condensates. Proceedings of the National Academy of Science, 109, 6467–6472.
[45] Lai, C. W., Kim, N. Y., Utsunomiya, S., Roumpos, G., Deng, H., Fraser, M. D., Byrnes, T., Recher, P., Kumada, N., Fujisawa, T., and Yamamoto, Y. 2007. Coherent zero-state and π-state in an exciton-polariton condensate array. Nature, 450, 529–532.
[46] Deng, H., Weihs, G., Santori, C., Bloch, J., and Yamamoto, Y. 2002. Condensation of semiconductor microcavity exciton polaritons. Science, 298, 199–202.
[47] Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L., and West, K. 2007. Bose-Einstein condensation of microcavity polaritons in a trap. Science, 316, 1007–1010.
[48] Lagoudakis, K. G., Ostatnický, T., Kavokin, A. V., Rubo, Y. G., André, R., and Deveaud-Plédran, B. 2009. Observation of half-quantum vortices in an excitonpolariton condensate. Science, 326, 974–976.
[49] Nitsche, Wolfgang H., Kim, Na Young, Roumpos, Georgios, Schneider, Christian, Kamp, Martin, Höfling, Sven, Forchel, Alfred, and Yamamoto, Yoshihisa. 2014. Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an excitonpolariton gas. Phys. Rev. B, 90, 205430.
[50] Deng, H., Solomon, G. S., Hey, R., Ploog, K. H., and Yamamoto, Y. 2007. Spatial coherence of a polariton condensate. Phys. Rev. Lett., 99, 126403.
[51] Nitsche, Wolfgang H., Kim, Na Young, Roumpos, Georgios, Schneider, Christian, Höfling, Sven, Forchel, Alfred, and Yamamoto, Yoshihisa. 2016. Spatial correlation of two-dimensional bosonic multimode condensates. Phys. Rev. A, 93, 053622.