Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T21:04:52.195Z Has data issue: false hasContentIssue false

7 - Wild ungulate diseases and the risk for livestock and public health

Published online by Cambridge University Press:  26 April 2011

Ezio Ferroglio
Affiliation:
University of Turin
Christian Gortázar
Affiliation:
Instituto de Investigación en Recursos Cinegéticos
Joaquín Vicente
Affiliation:
Instituto de Investigación en Recursos Cinegéticos
Rory Putman
Affiliation:
Manchester Metropolitan University
Marco Apollonio
Affiliation:
Università degli Studi di Sassari, Sardinia
Reidar Andersen
Affiliation:
Museum of Natural History and Archaeology, Norwegian University of Science and Technology, Trondheim
Get access

Summary

Introduction

The social changes occurring across Europe in the last 40 years have had a pronounced effect on the environment, creating a dynamic situation where new pathogens or new hosts emerge, changes in population density or host behaviour affect disease prevalence and, in some cases, may allow disease agents to boost their virulence and widen their host range (Figure 7.1).

Apart from the role of pathogens in the population dynamics of wild populations of ungulates (discussed here in Chapter 11), another significant issue is the risk of transmission of disease agents between wildlife and livestock or human beings. While some pathogens exclusively infect a single host species, these are usually highly coevolved parasites with limited effect on the primary host's population (Crawley, 1992; Vicente et al., 2004a). In contrast, many parasites can infect multiple host species and these are primarily responsible for outbreaks of infectious diseases in humans, livestock and indeed among wildlife (Swinton et al., 2002; Woolhouse, 2002).

The increased distribution and densities of wild ungulates registered all across Europe (see chapters in Apollonio et al., 2010), together with a move within the livestock industry from more intensive to more extensive farming systems, or at least systems with a lower human presence on the field, have increased the risk of contact between wildlife and livestock (e.g. Laddomada et al., 1994; Gortázar et al., 2007).

Type
Chapter
Information
Ungulate Management in Europe
Problems and Practices
, pp. 192 - 214
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

, A. A. V. V. (2000) Reporting system of wildlife diseases in Europe: European Network on wildlife as reservoirs of pathogens including zoonoses. FAIR-CT 98–4361, Madrid June 2000.
Acevedo, P., Vicente, J., Höfle, U., et al. (2007) Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiology and Infection 135, 519–527.CrossRefGoogle ScholarPubMed
Alexander, D. J. (2000) A review of avian influenza in different bird species. Veterinary Microbiology 74, 3–13.CrossRefGoogle ScholarPubMed
Almeria, S., Vidal, D., Ferrer, D., et al. (2007) Seroprevalence of Neospora caninum in non-carnivorous wildlife from Spain. Veterinary Parasitology 143, 21–28.CrossRefGoogle ScholarPubMed
Angulo, E. and Cooke, B. (2002) First synthesize new viruses then regulate their release? The case of the wild rabbit. Molecular Ecology 11, 2703–2709.CrossRefGoogle ScholarPubMed
Apollonio, M., Andersen, R. and Putman, R. (eds.) (2010) European Ungulates and their Management in the 21st Century. Cambridge, UK: Cambridge University Press.Google Scholar
Artois, M. (2003) Wildlife infectious disease control in Europe. Journal of Mountain Ecology 7, 89–97.Google Scholar
Artois, M., Masson, E., Barrat, J. and Aubert, M. F. A. (1993) Efficacy of 3 oral rabies vaccine-baits in the red fox: a comparison. Veterinary Microbiology 38, 167–172.CrossRefGoogle Scholar
Artois, M., Delahay, R., Guberti, V. and Cheeseman, C. (2001) Control of infectious diseases of wildlife in Europe. Veterinary Journal 162, 141–152.CrossRefGoogle Scholar
Artois, M., Bengis, R., Delahay, R., et al. (2008) Wildlife disease surveillance and monitoring. In Delahay, R. J., Smith, G. C. and Hutchings, M. R. (eds.) Management of Diseases in Wild Mammals. Tokyo: Springer, pp.187–214.Google Scholar
Balbo, T., Rossi, L. and Meneguz, P. G. (1989) Integrated control of Fascioloides magna infection in northern Italy. Parassitologia 31, 137–144.Google ScholarPubMed
Barling, K. S., Sherman, M., Peterson, M. J., et al. (2000) Spatial associations among density of cattle, abundance of wild canids, and seroprevalence to Neospora caninum in a population of beef calves. Journal of American Veterinary Medicine Association 217, 1361–1365.CrossRefGoogle Scholar
Bohm, M., White, P. C. L., Chambers, J., Smith, L. and Hutchings, M. R. (2007) Wild deer as a source of infection for livestock and humans in the UK. Veterinary Journal 174, 260–276.CrossRefGoogle ScholarPubMed
Bollo, E., Ferroglio, E., Dini, V., et al. (2000) Detection of Mycobacterium tuberculosis complex in lymph nodes of wild boar (Sus scrofa) by a target-amplified test system. Journal of Veterinary Medicine B 47, 337–342.CrossRefGoogle Scholar
Bouvier, G. (1963) Transmission possible de la tuberculose et de la brucellosi du tibie à l'homme et aux animaux domestiques et sauvages. Bulletin de l'Office International des Epizooties 59, 433–436.Google Scholar
Crawley, M. J. (1992) Natural Enemies: The Population Biology of Predators, Parasites and Diseases. London: Blackwell.CrossRefGoogle Scholar
Cunningham, A. A. (2005) A walk on the wild side – emerging wildlife diseases. They increasingly threaten human and animal health. British Medical Journal 331, 1214–1215.CrossRefGoogle Scholar
Daniels, M. J., Henderson, D., Greig, A., et al. (2003) The potential role of wild rabbits Oryctolagus cuniculus in the epidemiology of paratuberculosis in domestic ruminants. Epidemiology and Infection 130, 553–559.Google ScholarPubMed
Daszak, P., Cunningham, A. A. and Hyatt, A. D. (2000) Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287, 443–449.CrossRefGoogle ScholarPubMed
Thoisy, B., Dussart, P. and Kazanji, M. (2004) Wild terrestrial rainforest mammals as potential reservoirs for flaviviruses (yellow fever, dengue 2 and St Louis encephalitis viruses) in French Guiana. Transaction of the Royal Society of Tropical Medicine and Hygiene 98, 409–412.CrossRefGoogle Scholar
Dondo, A., Ferroglio, E., Goria, M., et al. (2006) Economic significance of bovine tuberculosis in Italy and effect of M. bovis infection in wild swine. In Thoen, C. O., Steele, J. H. and Gilsdorf, M. J. (eds.) Mycobacterium bovis Infection in Animals and Humans (2nd edn.). Oxford, UK: Blackwell Publishing, pp. 117–123.Google Scholar
Donnelly, C. A., Woodroffe, R., Cox, D. R., et al. (2006) Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439, 843–846.CrossRefGoogle ScholarPubMed
Dubey, J. P. (2003) Neosporosis in cattle. Journal of Parasitology 89, 42–56.Google Scholar
Fernandez de Mera, I. G., Vicente, J., Gortázar, C., Höfle, U., Fierro, Y. (2004) Efficacy of an in-feed preparation of ivermectin against helminths in the European wild boar. Parasitology Research 92, 133–136.CrossRefGoogle ScholarPubMed
Fernandez-Moran, J., Gomez, S., Ballesteros, F., et al. (1997) Epizootiology of sarcoptic mange in a population of Cantabrian chamois (Rupicapra pyrenaica parva) in northwestern Spain. Veterinary Parasitology 73, 163–171.CrossRefGoogle Scholar
Ferroglio, E. (2003) Wildlife veterinarian: a necessary contribution to wildlife conservation?. In Perez, J. M. (ed.) In Memoriam al Prof. Isidoro Ruiz Martinez. Jaen, Spain: Universidad de Jaen (Spain).Google Scholar
Ferroglio, E., Tolari, F., Bollo, E. and Bassano, B. (1998) First isolation of Brucella melitensis from Alpine ibex. Journal of Wildlife Diseases 34, 400–402.CrossRefGoogle ScholarPubMed
Ferroglio, E., Rossi, L. and Gennero, S. (2000) Lung-tissue extract as an alternative to serum for surveillance for brucellosis in chamois. Preventive Veterinary Medicine 43, 117–122.CrossRefGoogle ScholarPubMed
Ferroglio, E., Gennero, S., Rossi, L. and Tolari, F. (2003a). Epidemiologia della brucellosi nel camoscio alpino. Journal of Mountain Ecology 7, 229–232.Google Scholar
Ferroglio, E., Wamba, E., Trisciuoglio, A. and Meneghi, D. (2003b). Antibodies to Neospora caninum in wild mammals from Kenya, East Africa. Veterinary Parasitology 118, 43–49.CrossRefGoogle ScholarPubMed
Ferroglio, E., Gennero, M. S., Pasino, M., et al. (2007a) Cohabitation of a Brucella melitensis infected Alpine ibex (Capra ibex) with domestic small ruminants in an enclosure in Gran Paradiso National Park, in western Italian Alps. European Journal of Wildlife Research 53, 158–160.CrossRefGoogle Scholar
Ferroglio, E., Pasino, M., Romano, A., et al. (2007b) Evidence of Neospora caninum DNA in wild rodents. Veterinary Parasitology 148, 346–349.CrossRefGoogle ScholarPubMed
Fraquelli, C., Carpi, G., Bregoli, M., et al. (2005) Epidemiology of paratuberculosis in two red deer (Cervus elaphus) populations of Trentino (northern Italy). In Manning, E. J. B. and Nielsen, S. S. (eds.) Proceedings of the 8th International Colloquium on Paratuberculosis, held Copenhagen Denmark. Madison, WI: International Association for Paratuberculosis.Google Scholar
Frölich, K., Thiede, S., Kozikowski, T. and Jakob, W. (2002) A review of mutual transmission of important infectious diseases between livestock and wildlife in Europe. Annals of the New York Academy of Sciences 969, 4–13.CrossRefGoogle Scholar
Garnett, B. T., Delahay, R. J. and Roper, T. J. (2002) Use of cattle farm resources by badgers (Meles meles) and risk of bovine tuberculosis (Mycobacterium bovis) transmission to cattle. Proceedings of the Royal Society B–Biological Sciences 269, 1487–1491.CrossRefGoogle Scholar
Gauss, C. B. L., Dubey, J. P., Vidal, D., et al. (2006) Prevalence of Toxoplasma gondii antibodies in red deer (Cervus elaphus) and other wild ruminants from Spain. Veterinary Parasitology 136, 193–200.CrossRefGoogle Scholar
Giacometti, M., Janovsky, M., Belloy, L. and Frey, J. (2002) Infectious keratoconjunctivitis of ibex, chamois and other Caprinae. Revue Scientifique et Technique de l'Office International des Epizooties 21, 335–345.CrossRefGoogle ScholarPubMed
Gortázar, C., Ferroglio, E., Höfle, U., Froelich, K. and Vicente, J. (2007) Diseases shared between wildlife and livestock: a European perspective. European Journal of Wildlife Research 53, 241–256.CrossRefGoogle Scholar
Guberti, V., Rutili, D., Ferrari, G., Patta, C. and Oggaino, A. (1998) Estimate the threshold abundance for the persistence of the classical swine fever in the wild boar population of the eastern Sardinia. In Report on Measures to Control Classical Swine Fever in European Wild Boar. Document VI/7196/98-AL. Perugia, Italy: Commission of the European Communities, Directorate General VI for Agriculture.Google Scholar
Höfle, U., Gortázar, C., Ortiz, J. A., Knispel, B. and Kaleta, E. F. (2004) Outbreak of trichomoniasis in a woodpigeon (Columba palumbus) wintering roost. European Journal of Wildlife Research 50, 73–77.CrossRefGoogle Scholar
Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, H. and Dobson, A. P. (2001) The Ecology of Wildlife Diseases. Oxford, UK: Oxford University Press.Google Scholar
Kaden, V., Heyne, H., Kiupel, H., et al. (2002) Oral immunisation of wild boar against classical swine fever: concluding analysis of the recent field trials in Germany. Berliner Muncher Tierarztliche Wochenschrift 115, 179–185.Google ScholarPubMed
Kuiken, T., Fouchier, R., Rimmelzwaan, G. and Osterhaus, A. (2003) Emerging viral infections in a rapidly changing world. Current Opinion in Biotechnology 14, 641–646.CrossRefGoogle Scholar
Laddomada, A., Patta, C., Oggiano, A., et al. (1994) Epidemiology of classical swine fever in Sardinia: a serological survey of wild boar and comparison with African swine fever. Veterinary Record 134, 183–187.CrossRefGoogle ScholarPubMed
Leon-Vizcaino, L., Cubero, M. J., Gonzalez-Capitel, E., et al. (2001) Experimental ivermectin treatment of sarcoptic mange and establishment of a mange-free population of Spanish ibex. Journal of Wildlife Diseases 37, 775–785.CrossRefGoogle ScholarPubMed
Lopez-Olvera, J.R., Falconi, C., Fernandez-Pacheco, P., et al. (2010) Experimental infection of European red deer (Cervus elaphus) with bluetongue serotypes 1 and 8. Veterinary Microbiology 145, 148–152.CrossRefGoogle Scholar
Machackova, M., Matlova, L., Lamka, J., et al. (2003) Wild boar (Sus scrofa) as a possible vector of mycobacterial infections: reviews of literature and critical analysis of data from Central Europe between 1983 to 2001. Veterinary Medicine 48, 51–65.CrossRefGoogle Scholar
McInnes, C. J., Wood, A. R., Thomas, K., et al. (2006) Genomic characterization of a novel poxvirus contributing to the decline of the red squirrel (Sciurus vulgaris) in the UK. Journal of General Virology 87, 2115–2125.CrossRefGoogle Scholar
Meltzer, D. G. A. (1995) Veterinary wildlife reseach and its role in community development. Journal of the South African Veterinary Association 66, 187–189.Google Scholar
Mitchell, C. J. (1995) Geographic spread of Aedes albopictus and potential for involvement in arbovirus cycles in the Mediterranean Basin. Journal of Vector Ecology 20, 44–58.Google Scholar
Morgan, E. R., Lundervold, M., Medley, G. F., et al. (2006) Assessing risks of disease transmission between wildlife and livestock: the Saiga antelope as a case study. Biological Conservation 131, 244–254.CrossRefGoogle Scholar
Morner, T., Obendorf, D. L., Artois, M. and Woodford, M. H.(2002) Surveillance and monitoring of wildlife diseases. Revue Scientifique et Technique de l'Office International des Epizooties 21, 67–76.CrossRefGoogle ScholarPubMed
Nebbia, P., Robino, P., Ferroglio, E., et al. (2000) Paratuberculosis in red deer (Cervus elaphus hippelaphus) in the Western Alps. Veterinary Research Communication 24, 435–443.CrossRefGoogle Scholar
Novobilsky, A., Horackova, E., Hirtova, L., Modry, D. and Koudela, B. (2006) The giant liver fluke Fascioloides magna (Bassi 1875) in cervids in the Czech Republic and potential of its spreading to Germany. Parasitology Research 100, 549–553.CrossRefGoogle ScholarPubMed
Papa, A., Bino, S., Papadimitriou, E., et al. (2008) Suspected Crimean Congo haemorrhagic fever cases in Albania. Scandinavian Journalof Infectious Diseases 3, 1–3.Google Scholar
Parra, A., Larrasa, J., Garcia, A., Alonso, J. M. and Mendoza, J. H. (2005) Molecular epidemiology of bovine tuberculosis in wild animals in Spain: a first approach to risk factor analysis. Veterinary Microbiology 110, 293–300.CrossRefGoogle ScholarPubMed
Pennycott, T. W. (1998) Population density and infectious disease at bird tables. Veterinary Record 142, 523.Google ScholarPubMed
Phillips, C. J., Foster, C. R., Morris, P. A. and Teverson, R. (2003) The transmission of Mycobacterium bovis infection to cattle. Research in Veterinary Science 74, 1–15.CrossRefGoogle Scholar
Purse, B. V., Mellor, P. S., Rogers, D. J., et al. (2005) Climate change and the recent emergence of bluetongue in Europe. Nature Reviews Microbiology 3, 171–181.CrossRefGoogle Scholar
Rajkovic-Janje, R., Bosnic, S., Rimac, D. and Gojmerac, T. (2008) The prevalence of American liver fluke Fascioloides magna in red deer from Croatian hunting grounds. European Journal of Wildlife Research 54, 525–528.CrossRefGoogle Scholar
Rhyan, J., Deng, M., Wang, H., et al. (2008) Foot and mouth diseases in North American bison and elk: susceptibility, intra- and interspecific transmission, clinical signs and lesions. Journal of Wildlife Diseases 44, 269–279.CrossRefGoogle Scholar
Ritzmann, M., Gyra, H., Johannes, S., Hausleithner, D. and Heinritzi, K. (2000) Comparative investigations of a combined vaccine against porcine parvovirus and swine erysipelas and corresponding monovalent vaccines in different vaccination schedules. Tierarztl Pax 28, 23–27.Google Scholar
Robino, P., Nebbia, P., Tramuta, C., et al. (2008) Identification of Mycobacterium avium subsp. paratuberculosis in wild cervids (Cervus elaphus hippelaphus and Capreolus capreolus) from north-western Italy. European Journal of Wildlife Research 54, 357–360.CrossRefGoogle Scholar
Rodriguez, O., Fernandez de Mera, I. G., Vicente, J., Peña, A. and Gortázar, C. (2006) Efficacy of in-feed-administered ivermectin on Elaphostrongylus cervi first-stage excretion in red deer (Cervus elaphus). Parasitology Research 98, 176–178.CrossRefGoogle Scholar
Rodríguez-Sánchez, B., Iglesias-Martín, I., Martínez-Avilés, M. and Sánchez-Vizcaíno, J. M. (2008) Orbiviruses in the Mediterranean basin: updated epidemiological situation of bluetongue and new methods for the detection of BTV serotype 4. Transboundary and Emerging Diseases 55, 205–214.CrossRefGoogle ScholarPubMed
Rossi, L., Fraquelli, C., Vesco, U., et al. (2007) Descriptive epidemiology of a scabies epidemic in chamois in the Dolomite Alps, Italy. European Journal of Wildlife Research 53, 131–141.CrossRefGoogle Scholar
Rossi, S., Fromont, E., Pontier, D., et al. (2005) Incidence and persistence of classical swine fever in free-ranging wild boar (Sus scrofa). Epidemiology and Infection 133, 559–568.CrossRefGoogle Scholar
Schettler, E., Steinbach, F., Eschenbacher-Kaps, I., et al. (2006) Surveillance for prion disease in cervids, Germany. Emerging Infectious Diseases 12, 319–322.CrossRefGoogle ScholarPubMed
Simpson, V. R. (2002) Wild animals as reservoirs of infectious diseases in the UK. Veterinary Journal 163, 128–146.CrossRefGoogle ScholarPubMed
Sobrino, R., Dubey, J. P., Pabon, M., et al. (2008) Neospora caninum antibodies in wild carnivores from Spain. Veterinary Parasitology 155, 190–197.CrossRefGoogle ScholarPubMed
Swinton, J., Woolhouse, M. E. J., Begon, M. E., et al. (2002) Microparasite transmission and persistence. In Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, H. and Dobson, A. P. (eds.) The Ecology of Wildlife Diseases. Oxford, UK: Oxford University Press, pp.83–101.Google Scholar
Thomson, G. R., Bengis, R. G. and Brown, C. C. (2001) Picornavirus infections. In Williams, E. S. and Barker, I. K. (eds.) Infectious Diseases of Wild Mammals (3rd edn.). London: Manson Publishing, pp.119–130.Google Scholar
Vicente, J., Fierro, Y., Martinez, M. and Gortázar, C. (2004a) Long-term epidemiology, effect on body condition and interspecific interactions of concomitant infection by nasopharyngeal bot fly larvae (Cephenemyia auribarbis and Pharyngomyia picta, Oestridae) in a population of Iberian red deer (Cervus elaphus hispanicus). Parasitology 129, 349–361.CrossRefGoogle Scholar
Vicente, J., Segalés, J., Höfle, U., et al. (2004b) Epidemiological study on porcine circo virus type 2 (PCV2) infection in the European wild boar (Sus scrofa). Veterinary Research 35, 243–253.CrossRefGoogle Scholar
Vicente, J., Höfle, U., Garrido, J. M., et al. (2007) Risk factors associated with prevalence of tuberculosis-like lesions in wild boar and red deer in south central Spain. Veterinary Research 38, 451–464.CrossRefGoogle Scholar
Villanúa, D., Acevedo, P., Höfle, U., Rodríguez, O. and Gortázar, C. (2006a) Changes in transmission stage excretion after pheasant release. Journal of Helminthology 80, 313–318.Google ScholarPubMed
Villanúa, D., Höfle, U., Pérez-Rodríguez, L. and Gortázar, C. (2006b) Trichomonas gallinae in wintering common wood pigeons Columba palumbus in Spain. Ibis 148, 641–648.CrossRefGoogle Scholar
Ward, A. I., Etherington, T. R. and Smith, G. C. (2008) Exposure of cattle to Mycobacterium bovis excreted by deer in southwest England: a quantitative risk assessment. Consultancy report to TB Programme, Food and Farming Group, Defra, London.Google Scholar
Wilkins, M. J., Meyerson, J., Barlett, P. C., et al. (2008) Human Mycobacterium bovis infection and bovine tuberculosis outbreak, Michigan, 1994–2007. Emerging Infectious Diseases 14, 657–660.CrossRefGoogle Scholar
Wobeser, G. A. (1994) Investigation and Management of Disease in Wild Animals. New York: Plenum.CrossRefGoogle Scholar
Wobeser, G. A. (2002) Disease management strategies for wildlife. Revue Scientifique et Technique de l'Office International des Epizooties 21, 159–178.CrossRefGoogle ScholarPubMed
Woodford, M. (1965) The role of the veterinarian in wildlife conservation. Veterinary Record 77, 1311–1317.CrossRefGoogle ScholarPubMed
Woolhouse, M. E. (2002) Population biology of emerging and reemerging pathogens. Trends in Microbiology 10, 3–7.CrossRefGoogle Scholar
Zaffaroni, E., Manfredi, M. T., Citterio, C., et al. (2000) Host specificity of abomasal nematodes in free ranging alpine ruminants. Veterinary Parasitology 90, 221–230.CrossRefGoogle ScholarPubMed
Zanella, G., Durand, B., Hars, J., et al. (2008) Mycobacterium bovis in wildlife in France. Journal of Wildlife Diseases 44, 99–108.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×