Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T12:47:16.455Z Has data issue: false hasContentIssue false

6 - np- and Np-junction basics

Published online by Cambridge University Press:  05 June 2012

David L. Pulfrey
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

When neighbouring regions of a homogeneous semiconductor are doped with different types of dopant, a pn- or np-junction is formed. When the junction is between different semiconductors, the junction is labelled either Pn or Np, where the capital letter denotes the doping type of the semiconductor with the higher bandgap. Semiconductor/semiconductor junctions play a crucial role in solar cells, LEDs, bipolar transistors, and HJFETs, and are prominent also in MOSFETs. As we demonstrate in this chapter, a potential energy barrier forms at this type of junction. In a solar cell, this barrier facilitates the separation of photogenerated electron-hole pairs into a current. In the other devices, the modulation of the junction barrier height by an applied voltage allows the current to be controlled by external circuitry.

In this chapter the focus is mainly on the np-junction; it is used to achieve an understanding of the properties of semiconductor junctions via the drawing of an energy-band diagram, the construction of which is explained here. We also introduce the concepts of quasi-neutrality and quasi-Fermi levels. The latter prove useful in describing carrier concentrations under non-equilibrium conditions. Finally, the Np-junction is described, and some consequences of the bandgap mismatch are noted.

np-junction at equilibrium

To construct the equilibrium energy-band diagram for an np-junction, consider first Fig. 6.1a, in which the separate n- and p- type regions are shown.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • np- and Np-junction basics
  • David L. Pulfrey, University of British Columbia, Vancouver
  • Book: Understanding Modern Transistors and Diodes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840685.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • np- and Np-junction basics
  • David L. Pulfrey, University of British Columbia, Vancouver
  • Book: Understanding Modern Transistors and Diodes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840685.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • np- and Np-junction basics
  • David L. Pulfrey, University of British Columbia, Vancouver
  • Book: Understanding Modern Transistors and Diodes
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511840685.007
Available formats
×