Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T16:27:30.973Z Has data issue: false hasContentIssue false

Section 2 - Inflammatory Conditions

Published online by Cambridge University Press:  15 June 2018

Louis Caplan
Affiliation:
Beth Israel-Deaconess Medical Center, Boston
José Biller
Affiliation:
Loyola University Stritch School of Medicine, Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alhalabi, M. and Moore, P. M. 1994. Serial angiography in isolated angiitis of the central nervous system. Neurology, 44, 1221–6.Google Scholar
Alreshaid, A. A. and Powers, W. J. 2003. Prognosis of patients with suspected primary CNS angiitis and negative brain biopsy. Neurology, 61, 831–3.Google Scholar
Amlie-Lefond, C. and Gilden, D. 2016. Varicella zoster virus: A common cause of stroke in children and adults. J Stroke Cerebrovasc Dis, 25, 1561–69.CrossRefGoogle ScholarPubMed
Arthur, G., and Margolis, G. 1977. Mycoplasma-like structures in granulomatous angiitis of the central nervous system: Case reports with light and electron microscope studies. Arch Pathol Lab Med, 101, 382–7.Google Scholar
Benseler, S. M., de Veber, G., Hawkins, C., et al. 2005. Angiography-negative primary central nervous system vasculitis in children. Arthritis Rheum, 52, 2159–67.Google Scholar
Benseler, S. M., Silverman, E., Aviv, R. I., et al. 2006. Primary central nervous system vasculitis in children. Arthritis Rheum, 54, 1291–7.Google Scholar
Bhibhatbhan, A., Katz, N. R., Hudon, M., et al. 2006. Primary angiitis of the spinal cord presenting as a conus mass: Long term remission. Surg Neurol, 66, 622–5.Google Scholar
Calabrese, L. H. and Mallek, J. A. 1988. Primary angiitis of the central nervous system. Report of 8 cases, review of the literature and proposal for diagnostic criteria. Medicine, 108, 815–23.Google Scholar
Calabrese, L. H., Duna, G. F., and Lie, J. T. 1997. Vasculitis in the central nervous system. Arthritis Rheum, 40, 1189–201.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Call, G. K., Fleming, M. C., Sealfon, S., et al. 1988. Reversible cerebral segmental vasoconstriction. Stroke, 19, 1159–70.Google Scholar
Canhao, H., Fonseca, J. E., and Rosa, A. 2000. Intravenous gammaglobulin in the treatment of central nervous system vasculitis associated with Sjogren’s syndrome. J Rheumatol, 27, 1102–3.Google Scholar
Chu, C. T., Gray, L., Goldstein, L. B., and Hulette, C. M. 1998. Diagnosis of intracranial vasculitis: A multi-disciplinary approach. J Neuropathol Exp Neurol, 57, 30–8.Google Scholar
Cravioto, H. and Feigin, I. 1959. Noninfectious granulomatous angiitis with a predilection for the nervous system. Neurology, 9, 599609.Google Scholar
De Boysson, H., Zuber, M., Naggara, O., et al. 2014. Primary angiitis of the central nervous system: Description of the first fifty-two adults enrolled in the French cohort of patients with primary vasculitis of the central nervous system. Arthritis Rheumatol, 66, 1315–26.CrossRefGoogle ScholarPubMed
Ducros, A., Boukobza, M., Porcher, A., et al. 2007. The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome. A prospective series of 67 patients. Brain, 130, 3091–101.Google Scholar
Duna, G. and Calabrese, L. H. 1995. Limitations of invasive modalities in the diagnosis of primary angiitis of the central nervous system. J Rheumatol, 22, 662–7.Google Scholar
Ehsan, T., Hasan, S., Powers, J. M., and Heiserman, J. E. 1995. Serial magnetic resonance imaging in isolated angiitis of the central nervous system. Neurology, 45, 1462–5.Google Scholar
Finelli, P. F., Onyiuke, H. C., and Uphoff, D. F. 1997. Idiopathic granulomatous angiitis of the CNS manifesting as diffuse white matter disease. Neurology, 49, 1696–9.Google Scholar
Fountain, N. B. and Eberhard, D. A. 1996. Primary angiitis of the central nervous system associated with cerebral amyloid angiopathy: Report of two cases and review of the literature. Neurology, 46, 190–7.Google Scholar
Gilden, D. H., Kleinschmidt-DeMasters, B. K., Wellish, M., et al. 1996. Varicella zoster virus, a cause of waxing and waning vasculitis: New England Journal of Medicine case 5–1995 revisited. Neurology, 47, 1441–6.Google Scholar
Harrison, P. E. 1976. Granulomatous angiitis of the central nervous system. Case report and review. J Neurol Sci, 29, 335–41.Google Scholar
Hellmann, D. B., Roubenoff, R., Healy, R. A., and Wang, H. 1992. Central nervous system angiography: Safety and predictors of a positive result in 125 consecutive patients evaluated for possible vasculitis. J Rheumatol, 19, 568–72.Google ScholarPubMed
Hunn, M., Robinson, S., Wakefield, L., Mossman, S., and Abernethy, D. 1998. Granulomatous angiitis of the CNS causing spontaneous intracerebral haemorrhage: The importance of leptomeningeal biopsy. J Neurol Neurosurg Psychiatry, 65, 956–7.CrossRefGoogle ScholarPubMed
Hutchinson, C., Elbers, J., Halliday, W., et al. 2010. Treatment of small vessel primary CNS vasculitis in children: An open-label cohort study. Lancet Neurol, 9, 1078–84.CrossRefGoogle ScholarPubMed
Iancu-Gontard, D., Oppenheim, C., Touzé, E., et al. 2003. Evaluation of hyperintense vessels on FLAIR MRI for the diagnosis of intracerebral arterial stenoses. Stroke, 34, 1886–91.CrossRefGoogle ScholarPubMed
Johnson, M. D., Maciunas, R., Creasy, J., and Collins, R. D. 1994. Indolent granulomatous angiitis. J Neurosurg, 81, 472–6.CrossRefGoogle ScholarPubMed
Kadkhodayan, Y., Alreshaid, A., Moran, J. C., et al. 2004. Primary angiitis of the central nervous system at conventional angiography. Radiology, 233, 878–82.Google Scholar
Koo, E. H. and Massey, E. W. 1988. Granulomatous angiitis of the central nervous system: Protean manifestations and response to treatment. J Neurol Neurosurg Psychiatry, 51, 1126–33.Google Scholar
Kossorotoff, M., Touz, E., Godon-Hardy, S., et al. 2006. Cerebral vasculopathy with aneurysm formation in HIV-infected young adults. Neurology, 66, 1121–22.Google Scholar
Kumar, R., Wijdicks, E. F. M., Brown, R. D. Jr., Parisis, J. E., and Hammond, C. A. 1997. Isolated angiitis of the CNS presenting as subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry, 62, 649–51.CrossRefGoogle ScholarPubMed
Lanthier, S., Lortie, A., Michaud, J., et al. 2001. Isolated angiitis of the CNS in children. Neurology, 56, 837–42.Google Scholar
Lie, J. T. 1992. Primary (granulomatous) angiitis of the central nervous system: A clinical pathologic analysis of 15 new cases and a review of the literature. Hum Pathol, 23, 164–71.Google Scholar
Linnemann, C. C. and Alvira, M. M. 1980. Pathogenesis of varicella-zoster angiitis in the CNS. Arch Neurol, 37, 239–40.CrossRefGoogle ScholarPubMed
Miller, D. H., Ormerod, I. E. C., Gibson, A., et al. 1987. MR brain scanning in patients with vasculitis: Differentiation from multiple sclerosis. Neuroradiology, 29, 226–31.Google Scholar
Moore, P. M. 1989. Diagnosis and management of isolated angiitis of the central nervous system. Neurology, 39, 167–73.Google Scholar
Moore, P. M. 1998. Central nervous system vasculitis. Curr Opin Neurol, 11, 241–6.Google Scholar
Moussaddy, A., Levy, A., Strbian, D., et al. 2015. Inflammatory cerebral amyloid angiopathy, amyloid-β-related angiitis, and primary angiitis of the central nervous system: Similarities and differences. Stroke, 46, e2103.CrossRefGoogle ScholarPubMed
Negishi, C. and Sze, G. 1993. Vasculitis presenting as primary leptomeningeal enhancement with minimal parenchymal findings. AJNR Am J Neuroradiol, 14, 26–8.Google Scholar
Nishikawa, M., Sakamoto, H., Katsuyama, J., Hakuba, A., and Nishimura, S. 1998. Multiple appearing and vanishing aneurysms: Primary angiitis of the central nervous system. J Neurosurg, 88, 133–7.Google Scholar
Ohtake, T., Yoshida, H., Hirose, K., and Tanabe, H. 1989. Diagnostic value of the optic fundus in cerebral angiitis. J Neurol, 236, 490–1.Google Scholar
Pierot, L., Chiras, J., Debussche-Depriester, C., Dormont, D., and Bories, J. 1991. Intracerebral stenoting arteriopathies. Contribution of three radiological techniques to the diagnosis. J Neuroradiol, 18, 3248.Google ScholarPubMed
Rhodes, R. H., Madelaire, N. C., Petrelli, M., Cole, M., and Karaman, B. A. 1995. Primary angiitis and angiopathy of the central nervous system and their relationship to systemic giant cell arteritis. Arch Pathol Lab Med, 119, 334–9.Google ScholarPubMed
Riemer, G., Lamszus, K., Zschaber, R., et al. 1999. Isolated angiitis of the central nervous system: Lack of inflammation after long-term treatment. Neurology, 52, 196–9.CrossRefGoogle Scholar
Ritter, M. A., Dziewas, R., Papke, K., and Liemann, P. 2002. Follow-up examinations by transcranial doppler ultrasound in primary angiitis of the central nervous system. Cerebrovasc Dis, 14, 139–42.CrossRefGoogle ScholarPubMed
Salvarani, C., Brown, R. D. Jr, Calamia, K. T., et al. 2007. Primary central nervous system vasculitis: Analysis of 101 patients. Ann Neurol, 62, 442–51.Google Scholar
Salvarani, C., Brown, R. D. Jr, and Hunder, G. G. 2012. Adult primary central nervous system vasculitis. Lancet, 380, 767–77.Google Scholar
Salvarani, C., Hunder, G. G., Morris, J. M., et al. 2013. Aβ-related angiitis: Comparison with CAA without inflammation and primary CNS vasculitis. Neurology, 81, 1596–603.Google Scholar
Salvarani, C., Brown, R. D. Jr, Morris, J. M., et al. 2014. Catastrophic primary central nervous system vasculitis. Clin Exp Rheumatol, 32, S34.Google ScholarPubMed
Salvarani, C., Brown, R. D. Jr, Christianson, T. J., et al. 2015a. An update of the Mayo Clinic cohort of patients with adult primary central nervous system vasculitis. Description of 163 patients. Medicine (Baltimore), 94, e738.Google Scholar
Salvarani, C., Pipitone, P., and Hunder, G. G. 2015b. Management of primary and secondary central nervous system vasculitis. Curr Opin Rheumatol, 28, 21–8.Google Scholar
Scolding, N. J., Joseph, F., Kirby, P. A., et al. 2005. Aβ-related angiitis: Primary angiitis of the central nervous system associated with cerebral amyloid angiopathy. Brain, 128, 500–15.CrossRefGoogle ScholarPubMed
Wijdicks, E. F. M., Manno, E. M., Fulgham, J. R., and Giannini, C. 2003. Cerebral angiitis mimicking posterior leukoencephalopathy. J Neurol, 250, 444–8.Google Scholar
Zuber, M., Blustajn, J., Arquizan, C., et al. 1999. Angiitis of the central nervous system. J Neuroradiol, 26, 101–17.Google Scholar
Zuber, M., Touzé, E., Domigo, V., et al. 2006. Reversible cerebral angiopathy: Efficacy of nimodipine. J Neurol, 253, 1585–8.Google Scholar

References

Achkar, AA, Lie, JT, Hunder, GG, O’Fallon, WM, Gabriel, SE. How does previous corticosteroid treatment affect the biopsy findings in giant cell (temporal) arteritis? Ann Intern Med 1994; 120: 987–92.Google Scholar
Alba, MA, Garcia-Martinez, A, Prieto-Gonzalez, S, et al. Relapses in patients with giant cell arteritis: Prevalence, characteristics, and associated clinical findings in a longitudinally followed cohort of 106 patients. Medicine (Baltimore) 2014; 93: 194201.CrossRefGoogle Scholar
Almarzouqi, SJ, Morgan, ML, Lee, AG. Treatment of giant cell arteritis. Curr Opin Ophthalmol 2015; 26: 469–75.Google Scholar
Amiri, N, De Vera, M, Choi, HK, Sayre, EC, Avina-Zubieta, JA. Increased risk of cardiovascular disease in giant cell arteritis: A general population-based study. Rheumatology (Oxford) 2016; 55: 3340.Google Scholar
Andersson, R, Malmvall, BE, Bengtsson, BA. Acute phase reactants in the initial phase of giant cell arteritis. Acta Med Scand 1986; 220: 365–7.Google Scholar
Ball, EL, Walsh, SR, Tang, TY, Gohil, R, Clarke, JM. Role of ultrasonography in the diagnosis of temporal arteritis. Br J Surg 2010; 97: 1765–71.Google Scholar
Baslund, B, Helleberg, M, Faurschou, M, Obel, N. Mortality in patients with giant cell arteritis. Rheumatology (Oxford) 2015; 54: 139–43.Google Scholar
Berti, A, Campochiaro, C, Cavalli, G, et al. Giant cell arteritis restricted to the limb arteries: An overlooked clinical entity. Autoimmun Rev 2015; 14: 352–7.Google Scholar
Carmona, FD, Mackie, SL, Martin, JE, et al. A large-scale genetic analysis reveals a strong contribution of the HLA class II region to giant cell arteritis susceptibility. Am J Hum Genet 2015; 96: 565–80.Google Scholar
Caselli, RJ, Hunder, GG, Whisnant, JP. Neurologic disease in biopsy-proven giant cell (temporal) arteritis. Neurology 1988; 38: 352–9.Google ScholarPubMed
Cavazza, A, Muratore, F, Boiardi, L, Restuccia, G, Pipitone, N, Pazzola, G, et al. Inflamed temporal artery: histologic findings in 354 biopsies, with clinical correlations. Am J Surg Pathol 2014; 38: 1360–70.CrossRefGoogle ScholarPubMed
Caylor, TL, Perkins, A. Recognition and management of polymyalgia rheumatica and giant cell arteritis. Am Fam Physician 2013; 88: 676–84.Google Scholar
Chandran, AK, Udayakumar, PD, Crowson, CS, Warrington, KJ, Matteson, EL. The incidence of giant cell arteritis in Olmsted County, Minnesota, over a 60-year period 1950–2009. Scand J Rheumatol 2015; 44: 215–8.Google Scholar
Cid, MC, Font, C, Oristrell, J, et al. Association between strong inflammatory response and low risk of developing visual loss and other cranial ischemic complications in giant cell (temporal) arteritis. Arthritis Rheum 1998; 41: 2632.Google Scholar
Crowson, CS, Matteson, EL, Myasoedova, E, et al. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum 2011; 63: 633–9.Google Scholar
Danesh-Meyer, H, Savino, PJ, Gamble, GG. Poor prognosis of visual outcome after visual loss from giant cell arteritis. Ophthalmology 2005; 112: 1098–103.Google Scholar
Dasgupta, B, Borg, FA, Hassan, N, et al. BSR and BHPR guidelines for the management of giant cell arteritis. Rheumatology (Oxford) 2010; 49: 1594–7.Google Scholar
Davies, CG, May, DJ. The role of temporal artery biopsies in giant cell arteritis. Ann R Coll Surg Engl 2011; 93: 45.Google Scholar
Dejaco, C, Singh, YP, Perel, P, et al. Current evidence for therapeutic interventions and prognostic factors in polymyalgia rheumatica: A systematic literature review informing the 2015 European League Against Rheumatism/American College of Rheumatology recommendations for the management of polymyalgia rheumatica. Ann Rheum Dis 2015; 74: 1808–17.Google ScholarPubMed
Gilden, D, White, T, Khmeleva, N, et al. Prevalence and distribution of VZV in temporal arteries of patients with giant cell arteritis. Neurology 2015; 84: 1948–55.CrossRefGoogle ScholarPubMed
Gonzalez‐Gay, MA, Vazquez‐Rodriguez, TR, Lopez‐Diaz, MJ, et al. Epidemiology of giant cell arteritis and polymyalgia rheumatica. Arthritis Care Res 2009; 61: 1454–61.Google Scholar
Gonzalez-Gay, MA, Vazquez-Rodriguez, TR, Gomez-Acebo, I, et al. Strokes at time of disease diagnosis in a series of 287 patients with biopsy-proven giant cell arteritis. Medicine (Baltimore) 2009; 88: 227–35.Google Scholar
Hayreh, SS. Posterior ischaemic optic neuropathy: Clinical features, pathogenesis, and management. Eye (Lond) 2004; 18: 1188–206.Google Scholar
Hayreh, SS, Zimmerman, MB. Amaurosis fugax in ocular vascular occlusive disorders: Prevalence and pathogeneses. Retina 2014; 34: 115–22.Google Scholar
Hayreh, SS, Zimmerman, B. Visual deterioration in giant cell arteritis patients while on high doses of corticosteroid therapy. Ophthalmology 2003; 110: 1204–15.CrossRefGoogle ScholarPubMed
Hayreh, SS, Zimmerman, B, Kardon, RH. Visual improvement with corticosteroid therapy in giant cell arteritis. Report of a large study and review of literature. Acta Ophthalmol Scand 2002; 80: 355–67.Google Scholar
Hayreh, SS, Podhajsky, PA, Zimmerman, B. Ocular manifestations of giant cell arteritis. Am J Ophthalmol 1998a; 125: 509–20.Google Scholar
Hayreh, SS, Podhajsky, PA, Zimmerman, B. Occult giant cell arteritis: Ocular manifestations. Am J Ophthalmol 1998b; 125: 521–6.Google Scholar
Hayreh, SS, Podhajsky, PA, Raman, R, Zimmerman, B. Giant cell arteritis: Validity and reliability of various diagnostic criteria. Am J Ophthalmol 1997; 123: 285–96.Google Scholar
Horton, B, Magath, T, Brown, G. An undescribed form of arteritis of the temporal vessels. Mayo Clin Proc 1932; 7: 700–1.Google Scholar
Hunder, GG, Sheps, SG, Allen, GL, Joyce, JW. Daily and alternate-day corticosteroid regimens in treatment of giant cell arteritis: Comparison in a prospective study. Ann Intern Med 1975; 82: 613–8.CrossRefGoogle ScholarPubMed
Hunder, GG, Bloch, DA, Michel, BA, et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 1990; 33: 1122–8.Google ScholarPubMed
Hutchinson, J. Diseases of the arteries. On a peculiar form of thrombotic arteritis of the aged which is sometimes productive of gangrene. Arch Surg 1890; 1: 323–9.Google Scholar
Hunder, GG. The use and misuse of classification and diagnostic criteria for complex diseases. Ann Intern Med 1998; 129: 417–8.Google Scholar
Kermani, TA, Warrington, KJ, Crowson, CS, et al. Large-vessel involvement in giant cell arteritis: A population-based cohort study of the incidence – trends and prognosis. Ann Rheum Dis 2013; 72: 1989–94.Google Scholar
Kermani, TA, Schmidt, J, Crowson, CS, et al. Utility of erythrocyte sedimentation rate and C-reactive protein for the diagnosis of giant cell arteritis. Semin Arthritis Rheum 2012; 41: 866–71.Google Scholar
Khan, A, Dasgupta, B. Imaging in giant cell arteritis. Curr Rheumatol Rep 2015; 17: 52, 015–0527-y.Google Scholar
Lariviere, D, Sacre, K, Klein, I, et al. Extra- and intracranial cerebral vasculitis in giant cell arteritis: An observational study. Medicine (Baltimore) 2014; 93: e265.Google Scholar
Mahr, AD, Jover, JA, Spiera, RF, et al. Adjunctive methotrexate for treatment of giant cell arteritis: An individual patient data meta-analysis. Arthritis Rheum 2007; 56: 2789–97.Google Scholar
Ma-Krupa, W, Jeon, MS, Spoerl, S, et al. Activation of arterial wall dendritic cells and breakdown of self-tolerance in giant cell arteritis. J Exp Med 2004; 199: 173–83.Google Scholar
Mclean, CA, Gonzales, MF, Dowling, JP. Systemic giant cell arteritis and cerebellar infarction. Stroke 1993; 24: 899902.Google Scholar
Mohammad, AJ, Nilsson, JA, Jacobsson, LT, Merkel, PA, Turesson, C. Incidence and mortality rates of biopsy-proven giant cell arteritis in southern Sweden. Ann Rheum Dis 2015; 74: 993–7.Google Scholar
Mukhtyar, C, Guillevin, L, Cid, MC, et al. EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis 2009; 68: 318–23.Google Scholar
Muratore, F, Pipitone, N, Hunder, GG, Salvarani, C. Discontinuation of therapies in polymyalgia rheumatica and giant cell arteritis. Clin Exp Rheumatol 2013; 31: S8692.Google ScholarPubMed
Murchison, AP, Gilbert, ME, Bilyk, JR, et al. Validity of the American College of Rheumatology criteria for the diagnosis of giant cell arteritis. Am J Ophthalmol 2012; 154: 722–9.Google Scholar
Nagel, MA, White, T, Khmeleva, N, et al. Analysis of varicella-zoster virus in temporal arteries biopsy positive and negative for giant cell arteritis. JAMA Neurol 2015; 72: 1281–7.CrossRefGoogle ScholarPubMed
Narvaez, J, Bernad, B, Gomez-Vaquero, C, et al. Impact of antiplatelet therapy in the development of severe ischemic complications and in the outcome of patients with giant cell arteritis. Clin Exp Rheumatol 2008; 26: S5762.Google Scholar
Narvaez, J, Bernad, B, Roig-Vilaseca, D, et al. Influence of previous corticosteroid therapy on temporal artery biopsy yield in giant cell arteritis. Semin Arthritis Rheum 2007; 37: 13–9.Google Scholar
Nesher, G, Berkun, Y, Mates, M, et al. Low-dose aspirin and prevention of cranial ischemic complications in giant cell arteritis. Arthritis Rheum 2004; 50: 1332–7.Google Scholar
Parikh, M, Miller, NR, Lee, AG, et al. Prevalence of a normal C-reactive protein with an elevated erythrocyte sedimentation rate in biopsy-proven giant cell arteritis. Ophthalmology 2006; 113: 1842–5.Google Scholar
Pego-Reigosa, R, Garcia-Porrua, C, Pineiro, A, et al. Predictors of cerebrovascular accidents in giant cell arteritis in a defined population. Clin Exp Rheumatol 2004; 22: S137.Google Scholar
Prieto-Gonzalez, S, Arguis, P, Garcia-Martinez, A, et al. Large vessel involvement in biopsy-proven giant cell arteritis: Prospective study in 40 newly diagnosed patients using CT angiography. Ann Rheum Dis 2012; 71: 1170–6.Google Scholar
Salvarani, C, Pipitone, N, Versari, A, Hunder, GG. Clinical features of polymyalgia rheumatica and giant cell arteritis. Nat Rev Rheumatol 2012; 8: 509–21.Google Scholar
Samson, M, Jacquin, A, Audia, S, et al. Stroke associated with giant cell arteritis: A population-based study. J Neurol Neurosurg Psychiatry 2015; 86: 216–21.Google Scholar
Save-Soderbergh, J, Malmvall, BE, Andersson, R, Bengtsson, BA. Giant cell arteritis as a cause of death. Report of nine cases. JAMA 1986; 255: 493–6.CrossRefGoogle ScholarPubMed
Smith, JH, Swanson, JW. Giant cell arteritis. Headache 2014; 54: 1273–89.Google Scholar
Solomon, CG, Weyand, CM, Goronzy, JJ. Giant-cell arteritis and polymyalgia rheumatica. N Engl J Med 2014; 371: 50–7.Google Scholar
Soussan, M, Nicolas, P, Schramm, C, et al. Management of large-vessel vasculitis with FDG-PET: A systematic literature review and meta-analysis. Medicine (Baltimore) 2015; 94: e622.Google Scholar
Stacy, RC, Rizzo, JF, Cestari, DM. Subtleties in the histopathology of giant cell arteritis. Semin Ophthalmol 2011; 26: 342–8.Google Scholar
Stone, JH, Tuckwell, K, Dimonaco, S, et al. Trial of tocilizumab in giant-cell arteritis. N Engl J Med 2017; 377: 317–28.CrossRefGoogle ScholarPubMed
Tomasson, G, Peloquin, C, Mohammad, A, et al. Risk for cardiovascular disease early and late after a diagnosis of giant-cell arteritis: A cohort study. Ann Intern Med 2014a; 160: 7380.Google Scholar
Tomasson, G, Peloquin, C, Mohammad, A, et al. Risk for cardiovascular disease early and late after a diagnosis of giant-cell arteritis: A cohort study. Ann Intern Med 2014b; 160: 7380.Google Scholar
Ungprasert, P, Thongprayoon, C, Kittanamongkolchai, W, Srivali, N, Cheungpasitporn, W. Peripheral arterial disease in patients with giant cell arteritis: A meta-analysis. Int J Rheum Dis 2016; 19: 819–25.CrossRefGoogle ScholarPubMed
Weyand, CM, Hicok, KC, Hunder, GG, Goronzy, JJ. The HLA-DRB1 locus as a genetic component in giant cell arteritis. Mapping of a disease-linked sequence motif to the antigen binding site of the HLA-DR molecule. J Clin Invest 1992; 90: 2355–61.Google Scholar
Weyand, CM, Liao, YJ, Goronzy, JJ. The immunopathology of giant cell arteritis: Diagnostic and therapeutic implications. J Neuroophthalmol 2012; 32: 259–65.Google Scholar
Wilkinson, IM, Russell, RW. Arteries of the head and neck in giant cell arteritis. A pathological study to show the pattern of arterial involvement. Arch Neurol 1972; 27: 378–91.Google Scholar
Yates, M, Loke, YK, Watts, RA, MacGregor, AJ. Prednisolone combined with adjunctive immunosuppression is not superior to prednisolone alone in terms of efficacy and safety in giant cell arteritis: Meta-analysis. Clin Rheumatol 2014; 33: 227–36.Google Scholar
Zenone, T. Fever of unknown origin in rheumatic diseases. Infect Dis Clin North Am 2007; 21: 1115, 35, xxi.Google Scholar

References

Al-Homood, I. A. (2014). Tocilizumab: A new therapy for large vessel vasculitis. Clinical and Experimental Medicine, 14, 355.Google Scholar
Asaoka, K., Houkin, K., Fujimoto, S., Ishikwa, T., & Abe, H. (1998). Intracranial aneurysmas associated with aortitis syndrome: Case report and review of the literature. Neurosurgery, 42, 157.Google Scholar
Ask-Upmark, E. & Fajers, C.-M. (1956). Further observations on Takayasu’s syndrome. Acta Medica Scandinavica, 155, 275.CrossRefGoogle Scholar
Bleck, T. P. (1989). Takayasu’s disease. In Handbook of Clinical Neurology, ed. Toole, J.F.. Chicago: Elsevier, vol. 11: part III, ch. 20.Google Scholar
Bustamante, R. A., Milanes, B., Casas, M., & De-La Torre, A. (1954). The chronic subclavian-carotid obstruction syndrome (pulseless disease). Angiology, 5, 479.Google Scholar
Caltran, E., Di Colo, G., Ghigliotti, G., et al. (2014). Two Takayasu arteritis patients successfully treated with rituximab. Clin Rheumat, 33, 1183.Google Scholar
Davy, J. (1839). Researches, Physiological and Anatomical, Volume 1, London: Smith Elder and Co. (quoted from Judge et al., 1962).Google Scholar
de Souza, A. W. S., Machado, N. P., Pereira, V. M., et al. (2010). Antiplatelets therapy for the prevention of arterial ischemic events in Takayasu arteritis. Circulation Journal, 74, 1236.Google Scholar
Deyu, Z., Dijun, F., & Lisheng, L. (1992). Takayasu arteritis in China: A report of 530 cases. Heart Vessels, Suppl 7, 32.Google Scholar
Dong, R.-P., Kimura, A., Numano, F., et al. (1992). HLA-DP antigen and Takayasu arteritis. Tissue Antigens, 39, 106.Google Scholar
Frøvig, A. G. (1946). Bilateral obliteration of the common caroid artery. Thrombangitis obliterans? Acta Phychiatrica Neurologica Scandinavica, Suppl, 39.Google Scholar
Gibbons, T. B. & King, R. L. (1957). Obliterative brachiocephalic arteritis: Pulseless disease of Takayasu. Circulation, 15, 845.Google Scholar
Giffin, H. M. (1939). Reversed coarctation and vasomotor gradient: Report of a cardiovascular anomaly with sympotoms of brain tumor. Proceedings of the Mayo Clinic, 14, 561.Google Scholar
Gilmour, J. R. (1941). Giant-cell arteritis. Journal of Pathology and Bacteriology, 53, 263.Google Scholar
Grosset, D. G., Patterson, J., & Bone, I. (1992). Intracranial haemodynamics in Takayasu’s arteritis. Acta Neurochirurgica, 119, 161.Google Scholar
Hall, S., Barr, W., Lie, J. T., et al. (1985). Takayasu arteritis. Medicine, 94, 89.Google Scholar
Hata, A., Noda, M., Moriwaki, R., & Numano, F. (1996). Angiographic findings of Takayasu arteritis: New classification. International Journal of Cardiology, 54 (Suppl), s155.Google Scholar
Hirose, K. & Baba, K. (1963). A study of fundus changes in the early stages of Takayasu–Ohnishi (pulseless) disease. American Journal of Ophthalmology, 55, 293.Google Scholar
Hirsch, M. S., Aikat, B. K., & Basu, A. K. (1964). Takayasu arteritis. Bulletin Johns Hopkins Hospital, 115, 29.Google Scholar
Ishikawa, K. (1981). Survival and morbidity after diagnosis of occlusive thromboaortopathy (Takayasu’s disease). American Journal of Cardiology, 47, 1026.Google Scholar
Ito, I. (1995). Aortitis syndrome (Takayasu’s arteritis). A historical perspective. Japan Heart Journal, 36, 273.Google Scholar
Judge, R. D., Currier, R. D., Gracie, W. A., & Figley, M. M. (1962). Takayasu’s arteritis and the aortic arch syndrome. American Journal of Medicine, 32, 379.Google Scholar
Kalmanson, R. B. & Kalmansohn, R. W. (1957). Thrombotic obliteration of the branches of the aortic arch. Circulation, 15, 237.Google Scholar
Kerr, G. S., Hallahan, C. W., Gierdant, J., et al. (1994). Takayasu arteritis. Annals of Internal Medicine, 120, 919.Google Scholar
Kissin, E. Y. & Merkel, P. A. (2004). Diagnostic imaging in Takayasu arteritis. Current Opinion in Rheumatology, 16, 31.Google Scholar
Koide, K. (1992). Aortitis syndrome. Nihon Rinsho, 50 (Supplement), 343 (in Japanese).Google Scholar
Koszewski, B. J. (1958). Branchial arteritis or aortic arch arteritis. A new inflammatory arterial disease (pulseless disease). Angiology, 9, 180.Google Scholar
Kussmaul, A. (1873). Zwei Falle von spontaner allmaliger Verschliessung grosser Halsarterienstamme. Deutsche Klinik, 24, 461.Google Scholar
Lessoff, M. H. & Glynn, L. E. (1959). Pulseless syndrome. Lancet, 8, 799–847.Google Scholar
Lupi-Herrera, E., Sanchez-Torres, G., Marcushamer, J., et al. (1979). Takayasu’s arteritis. Clinical study of 107 cases. American Heart Journal, 73, 94.Google Scholar
Marquis, J., Richardson, J. B., Ritchie, A. C., & Wigle, E. D. (1968). Idiopathic medial aortopathy and arteriopathy. American Journal of Medicine, 44, 939.Google Scholar
Martorell, F. & Fabbé Tersol, J. (1944). El síndrome de obliteración de los troncos supraaorticos. Medicina Clínica (Barcelona), 2, 26.Google Scholar
Moriwaki, R., Noda, M., Yajima, M., Sharma, B. K., & Numano, F. (1997). Clinical manifestations of Takayasu arteritis in India and Japan: New classification of angiographic findings. Angiology, 48, 369.Google Scholar
Miyata, T. (2014). The Asia Pacific meeting for vasculitis and ANCA workshop 2012: Surgical treatment for Takayasu’s arteritis. Clinical and Experimental Nephrology, 18, 296.Google Scholar
Nakao, K., Ikeda, M., Kimata, S., et al. (1967). Takayasu’s arteritis. Clinical report of eighty-four cases and immunologic studies of seven cases. Circulation, 35, 1141.Google Scholar
Nakaoka, Y., Higuchi, K., Arita, Y., et al. (2013). Tocilizumab for the treatment of patients with refractory Takayasu arteritis. International Heart Journal, 54, 405.Google Scholar
Nastri, M. V., Baptista, L. P. S., Baroni, R. H., et al. (2004). Gadolinium-enhanced three-dimensional MR angiography of Takayasu arteritis. Radio Graphics, 24, 773.Google Scholar
Ohigashi, H., Haraguchi, G., Konishi, M., et al. (2014). Improved prognosis of Takayasu arteritis over the past decade: Comprehensive analysis of 106 patients. Circulation Journal, 76, 1004.Google Scholar
Osman, M., Emery, D., & Yacyshyn, E. (2015). Tocilizumab for treating Takayasu’s arteritis and associated stroke: A case series and updated review of the literature. Journal of Stroke and Cerebrovascular Diseases, 24, 1291.Google Scholar
Pahwa, J. M., Pandey, M. P., & Gypha, D. P. (1959). Pulseless disease, or Takayasu’s disease. British Medical Journal, 2, 1439.Google Scholar
Pokrovsky, A. V., Tsereshkin, D. M., & Golossovskaya, M. A. (1980). Pathology of non-specific aortoarteritis. Angiology, 31, 549.Google Scholar
Reivich, M., Holling, H. E., Roberts, B., & Toole, J. F. (1961). Reversal of blood flow through the vertebral artery and its effects on cerebral circulation. New England Journal of Medicine, 265, 878.Google Scholar
Rose, A. G. & Sinclair-Smith, C. C. (1980). Takayasu’s arteritis: A study of 16 autopsy cases. Archives of Pathology and Laboratory Medicine, 104, 231.Google Scholar
Ross, R. S. & McKusick, V. A. (1953). Aortic arch syndromes. Diminished or absent pulses in arteries arising from arch of aorta. Archives of Internal Medicine, 92, 701.Google Scholar
Sato, T., Kunimatsu, J., Maeda, J., et al. (2014). Diagnosis of late-onset Takayasu arteritis for elderly adults using fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography. JAGS, 62, 2463.Google Scholar
Savory, W. S. (1856). Case of a young woman in whom the main arteries of both upper extremities and of the left side of the neck were throughout completely obliterated. Transactions Medical-Chirurgical Society (London), London, 39, 205, (quoted from Judge et al., 1962).Google Scholar
Sharma, S., Saxena, A., Talwar, K. K., et al. (1992). Renal artery stenosis caused by nonspecific arteritis (Takayasu disease): Results of treatment with percutaneous transluminal angioplasty. American Journal of Radiology, 158, 417.Google Scholar
Shimizu, K. & Sano, K. (1951). Pulseless disease. Journal of Neuropathology and Experimental Neurology, 1, 37.Google Scholar
Stanley, P., Roebuck, D., & Barboza, A. (2003). Takayasu’s arteritis in children. Techniques in Vascular and Interventional Radiology, 6, 158.Google Scholar
Tabata, M., Kitagawa, T., Saito, T., et al. (2001). Extracranial carotid aneurysm in Takayasu’s arteritis. Journal of Vascular Surgery, 34, 739.Google Scholar
Takano, K., Sadoshima, S., Ibayashi, S., Ichiya, Y., & Fujishima, M. (1993). Altered cerebral hemodynamics and metabolism in Takayasu’s arteritis with neurological deficits. Stroke, 24, 1501.CrossRefGoogle ScholarPubMed
Takayasu, M. (1908). A case with peculiar changes of the central retinal vessels. Acta Societatis Ophthalmologicae Japonicae, 12, 554, (in Japanese).Google Scholar
Tachibana, M., Mukouhara, N., Hirami, R., et al. (2014). Ultrasonography is convenient and useful for assessment and follow-up of Takayasu’s arteritis. Journal of Medical Ultrasonics, 41, 365.Google Scholar
Terao, C. (2014). History of Takayasu arteritis and Dr. Mikito Takayasu. International Journal of Rheumatic Diseases, 17, 2014.Google Scholar
Thurlbeck, W. M. & Currens, J. H. (1959). The aortic arch syndrome (pulseless disease): A report of ten cases with three autopsies. Circulation, 19, 499.Google Scholar
Uchida, Y., Matsukawa, N., Oguri, T., et al. (2011). Reversible cerebral vasoconstriction syndrome in a patient with Takayasu’s arteritis. Internal Medicine, 50, 1611.Google Scholar
Watanabe, Y., Miyata, T., & Tanemoto, K. (2015). Current clinical features of new patients with Takayasu arteritis observed from cross-country research in Japan: Age and sex specificity. Circulation, 132, 1701.Google Scholar
Yamanaka, T., Sawai, Y., & Hosoi, H. (2013). Bilateral subclavian steal syndrome with vertigo. Auris Nasus Larynx, 41, 307.Google Scholar
Yang, L., Zhang, H., Jiang, X., et al. (2015). Clinical features and outcomes of Takayasu arteritis with neurological symptoms in China: A retrospective study. Journal of Rheumatology, 42, 1846.CrossRefGoogle Scholar

References

Akman-Demir, G., Baykan-Kurt, B., Serdaroglu, P., et al. 1996. Seven-year followup of neurologic involvement in Behçet’s syndrome. Arch Neurol, 53, 691–4.Google Scholar
Akman-Demir, G., Bahar, S., Çoban, O., et al. 1998. Cranial MRI findings in Behçet’s disease: A study of 134 MRI of 98 cases. J Neurol, 245, 362.Google Scholar
Allen, N. B. 1993. Miscellaneous vasculitic syndromes including Behçet’s disease and central nervous system vasculitis. Curr Opin Rheumatol, 5, 51–6.Google Scholar
Ameri, A. and Bousser, M. G. 1992. Cerebral venous thrombosis. Neurol Clin, 10, 87111.Google Scholar
Arias, M. J., Calero, E., Gil, J. F., and Paz, J. 1987. Spinal subarachnoid hematoma in Behçet’s disease. Neurosurgery, 20, 62–3.Google Scholar
Arida, A. and Sfikakis, P.P. 2014. Anti-cytokine biologic treatment beyond anti-TNF in Behçet’s disease. Clin Exp Rheumatol, 32 (Suppl. 84), S14955.Google Scholar
Assaad-Khalil, S., Abou-Seif, M., Abou-Seif, S., El-Sewy, F., and El-Sewy, M. 1993. Neurologic involvement in Behçet’s disease: Clinical, genetic and computed tomographic study. In Wechsler, B. and Godeau, P., eds., Behçet’s Disease. Amsterdam: Excerpta Medica International Congress Series, 1037, pp.409–14.Google Scholar
Bahar, S., Çoban, O., Gürvit, I. H., Akman-Demir, G., and Gökyiğit, A. 1993. Spontaneous dissection of the extracranial vertebral artery with spinal subarachnoid haemorrhage in a patient with Behçet’s disease. Neuroradiology, 35, 352–4.Google Scholar
Banna, M. and El Ramahi, K. 1991. Neurologic involvement in Behçet’s disease: Imaging findings in 16 patients. Am J Neuroradiol, 12, 791–6.Google Scholar
Bartlett, S. T., McCarthy, W. J. III, Palmer, A. S., et al. 1988. Multiple aneurysms in Behçet’s disease. Arch Surg, 123, 1004–8.Google Scholar
Behçet, H. 1937. Ueber rezidivierende Aphtöse durch ein Virus verursachte Geschwüre am Mund am Auge und an den Genitalen. Dermatol Wochensch 36, 1152–7.Google Scholar
Ben-Itzhak, J., Keren, S., and Simon, J. 1985. Intracranial venous thrombosis in Behçet’s syndrome. Neuroradiology, 27, 450–1.Google Scholar
Benamour, S., Zeroual, B., Bennis, R., Amraoui, A., and Bettal, S. 1990. Maladie de Behçet: 316 cas. Presse Med, 19, 1485–9.Google Scholar
Bienenstock, H. and Murray, E. M. 1961. Behçet’s syndrome: Report of a case with extensive neurologic manifestations. N Engl J Med, 264, 1342–5.Google Scholar
Bousser, M. G., Bletry, O., Launay, M., et al. 1980. Thromboses veineuses céérébrales au cours de la maladie de Behçet. Revue Neurologique, 136, 753–62.Google Scholar
Bousser, M. G., Chiars, J., and Bories, J. 1985. Cerebral venous thrombosis: A review of 38 cases. Stroke, 16, 199211.CrossRefGoogle ScholarPubMed
Buge, A., Vincent, D., Rancurel, G., et al. 1987. Maladie de Behçet avec anévrysmes artériels multiples intracraniens. Revue Neurologique, 143, 832–5.Google Scholar
Cavara, V., and D’Ermo, F. 1954. A case of Behçet’s syndrome. XVII Concilium. Acta Ophthalmol (Copenh), 3, 1489–505.Google Scholar
Çoban, O., Bahar, S., Akman-Demir, G., et al. 1999. Masked assessment of MRI findings: Is it possible to differentiate neuro-Behçet’s disease from other central nervous system diseases? Neuroradiology, 41, 255–60.Google Scholar
Davitchi, F., Shavran, F., Akbarin, M., et al. 1997. Behçet’s disease: Analysis of 3443 cases. APLAR J Rheumatol, 1, 25.Google Scholar
Dilsen, N. 2000. About diagnostic criteria for Behçet’s disease: Our new proposal. In Bang, D., Lee, E. S., Lee, S., eds., Behçet’s Disease. Seoul: Design Mecca Publishing Co., pp. 101–4.Google Scholar
Ehrlich, G. E. 1997. Vasculitis in Behçet’s disease. Int Rev Immunol, 14, 81–8.Google Scholar
Emmi, L., Salvati, G., Brugnolo, F., and Morchione, T. 1995. Immunopathological aspects of Behçet’s disease. Clin Exp Rheumatol, 13, 687–91.Google Scholar
Emmungil, H., Yaşar Bilge, N.Ş., Küçükşahin, O., et al. 2014. A rare but serious manifestation of Behçet’s disease: Intracardiac thrombus in 22 patients. Clin Exp Rheumatol, 32 (Suppl. 84), 8792.Google Scholar
Fusegawa, H., Ichikawa, Y., Tanaka, Y., et al. 1991. Blood coagulation and fibrinolysis in patients with Behçet’s disease. Rinsho Byori, 39, 509–16.Google Scholar
Gerber, S., Biondi, A., Dormont, D., Wechsler, B., and Marsault, C. 1996. Longterm MR follow-up of cerebral lesions in neuro-Behçet’s disease. Neuroradiology, 38, 761–8.Google Scholar
Godeau, P., Wechsler, B., Maaouni, A., Fagard, M., and Herreman, G. 1980. Manifestations cardiovasculaires de la maladie de Behçet. Ann Dermatol et Vénéréol, 167, 741–7.Google Scholar
Hadfield, M. G., Aydin, F., Lippman, H. R., and Sanders, K. M. 1997. Neuro-Behçet’s disease [Review]. Clin Neuropathol, 16, 5560.Google Scholar
Hampton, K. K., Chamberlain, M. A., Menon, D. K., and Davies, J. A. 1991. Coagulation and fibrinolytic activity in Behçet’s disease. Thromb Haemost, 66, 292–4.Google Scholar
Harper, M. C., O’Neill, B. P., O’Duffy, J. D., and Forbes, G. S. 1985. Intracranial hypertension in Behçet’s disease: Demonstration of sinus occlusion with use of digital subtraction angiography. Mayo Clin Proc, 60, 419–22.Google Scholar
Hassen Khoda, R., Declemy, S., Batt, M., et al. 1991. Maladie de Behçet avec atteinte artérielle multiple et volumineux angiome intra-cérébrale. Journal des Maladies Vasculaires, 16, 383–6.Google Scholar
Hatemi, G., Seyahi, E., Fresko, I., Talarico, R., and Hamuryudan, V. 2014. Behçet’s syndrome: A critical digest of the 2013–2014 literature. Clin Exp Rheumatol, 32 (Suppl. 84): S11222.Google Scholar
Herskovitz, S., Lipton, R. B., and Lantos, G. 1988. Neuro-Behçet’s disease. CT and clinical correlates. Neurology, 38, 1714–20.Google Scholar
Huong du, L. T., Wechsler, B., Piette, J. C., et al., 1993. Long term prognosis of arterial lesions in Behçet’s disease. In Wechsler, B. and Godeau, P., eds., Behçet’s Disease. Amsterdam: Excerpta Medica, pp. 557–62.Google Scholar
Imaizumi, M., Nukada, T., Toneda, S., and Abe, H. 1980. Behçet’s disease with sinus thrombosis and arteriovenous malformation in brain. J Neurol, 222, 215–8.Google Scholar
International Study Group for Behçet’s Disease. 1990. Criteria for Behçet’s disease. Lancet, 335, 1078–80.Google Scholar
Iragui, V. J. and Maravi, E. 1986. Behçet’s syndrome presenting as cerebrovascular disease. J Neurol Neurosurg Psychiatr, 49, 838–40.Google Scholar
Kawakita, H., Nishimura, N., Satoh, Y., and Shibata, N. 1967. Neurological aspects of Behçet’s disease. J Neurol Sci, 5, 417–39.Google Scholar
Kidd, D., Steuer, A., Denman, M., and Rudge, P. 1999. Neurological complications in Behçet’s syndrome. Brain, 122, 2183–94.Google Scholar
Kikuchi, H., Takayama, M., and Hirohata, S. 2014. Quantitative analysis of brainstem atrophy on magnetic resonance imaging in chronic progressive neuro-Behçet’s disease. J Neurol Sci, 337, 80–5.Google Scholar
Knapp, P. 1941. Beitrag zur Symptomatologie und Therapie der rezidivierenden Hypopyoniritis und der begleitenden aphtözen Schleimhauterkrankungen. Schweiz Med Wochenschr, 71, 1288–90.Google Scholar
Krespi, Y., Akman-Demir, G., Poyraz, M., et al. 2001. Cerebral vasculitis and ischaemic stroke in Behçet’s disease: Report of one case and review of the literature. Eur J Neurol, 8, 719–22.Google Scholar
Kumral, E., Evyapan, D., Oksel, F., Keser, G., and Bereketoglu, M. A. 1999. Transcranial Doppler detection of MES in patients with Behçet’s disease. J Neurol, 246, 592–5.Google Scholar
Kumral, E., Evyapan, D., Tunçel, R. 2012. Reversible cerebral venulitis in a patient with neuro-Behçet’s disease. Eur J Neurol, 19:e756.Google Scholar
Lakhanpal, S., Tani, K., Lie, J. T., et al. 1985. Pathologic features of Behçet’s syndrome: A review of Japanese autopsy registry data. Hum Pathol, 16, 790–5.Google Scholar
Lehner, T. 1997. The role of heat shock protein, microbial and autoimmune agents with the aetiology of Behçet’s disease. Int Rev Immunol, 14, 2132.Google Scholar
Lehner, T., Lavery, R., Smith, R., et al. 1991. Association between the 65-kilodalton heat shock protein, Streptococcus sanguis, and the corresponding antibodies in Behçet’s syndrome. Infect Immun, 59, 1434–41.Google Scholar
Macchi, P., Grossman, R. I., Gomori, J. M., et al. 1986. High field MR imaging of cerebral venous thrombosis. J Comput Assist Tomogr, 10, 10–5.Google Scholar
Masheter, H. C. 1959. Behçet’s syndrome complicated by intracranial thrombophlebitis. Proc R Soc Med, 52, 1039–40.Google Scholar
Matsumoto, T., Uekusa, T., and Fukuda, Y. 1991. Vasculo-Behçet’s disease: A pathologic study of eight cases. Hum Pathol, 22, 4551.Google Scholar
Medejel, A., El Alaoui Faris, M., Al-Zemmouri, K., et al. 1986. Les manifestations neurologiques de la maladie de Behçet. Semaine des Hôpitaux, 62, 1325–8.Google Scholar
Miller, D. H., Ormerod, I. E., Gibson, A., et al. 1987. MR brain scanning in patients with vasculitis: Differentiation from multiple sclerosis. Neuroradiology, 29, 226–31.Google Scholar
Mizuki, N., Meguro, A., Ota, M., et al. 2010. Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet’s disease susceptibility loci. Nat Genet, 42: 703.Google Scholar
Montalban, J., Codina, A., Alijotas, J., Ordi, J., and Khamashta, M. 1990. Magnetic resonance imaging in Behçet’s disease. J Neurol Neurosurg Psychiatry, 53, 442.Google Scholar
Morissey, S. P., Miller, D. H., Hermaszewski, R., et al. 1993. Magnetic resonance imaging of the central nervous system in Behçet’s disease. Eur Neurol, 33, 287–93.Google Scholar
Nagata, K. 1985. Recurrent intracranial haemorrhage in Behçet’s disease. J Neurol Neurosurg Psychiatr, 48, 190–1.Google Scholar
Nishimura, M., Satoh, K., Suga, M., and Oda, M. 1991. Cerebral angio- and neuro-Behçet’s syndrome: Neuroradiological and pathological study of one case. J Neurol Sci, 106, 1924.Google Scholar
O’Duffy, J. D. 1990. Behçet’s syndrome. N Engl J Med, 322, 326–7.Google Scholar
O’Duffy, J. D. 1994. Behçet’s disease [Review]. Curr Opin Rheumatol, 6, 3943.Google Scholar
O’Duffy, J. D. and Goldstein, N. P. 1976. Neurological involvement in seven patients with Behçet’s disease. Am J Med, 61, 170–8.Google Scholar
O’Duffy, J. D., Carney, J. A., and Deodhar, S. 1971. Behçet’s disease. Report of 10 cases, 3 with new manifestations. Ann Intern Med, 75, 561–9.Google Scholar
Ozyazgan, S., Uzun, H., Onal, B., Tuzcu, A., Ugurlu, S., Andican, G. 2013. Lectin-like oxidised LDL receptor-1 as a marker of endothelial dysfunction in Behçet’s disease. Clin Exp Rheumatol, 31 (Suppl. 77), 71–6.Google Scholar
Pamir, M. N., Kansu, T., Erbengi, A., and Zileli, T. 1981. Papilledema in Behçet’s syndrome. Arch Neurol, 38, 643–5.Google Scholar
Patel, D. V., Neuman, M. J., and Hier, D. B. 1989. Reversibility of CT and MR findings in neuro-Behçet’s disease. J Comput Assist Tomogr, 13, 669–73.Google Scholar
Pineton de Chambrun, M., Wechsler, B., Geri, G., Cacoub, P., and Saaddoun, D. 2012. New insights into the pathogenesis of Behçet’s disease. Autoimmun Rev, 11, 687–98.Google Scholar
Rougemont, D., Bousser, M. G., Wechsler, B., et al. 1982. Manifestations neurologiques de la maladie de Behçet. Revue Neurologique, 138, 493505.Google Scholar
Rubinstein, L. J. and Urich, H. 1963. Meningo-encephalitis of Behçet’s disease: Case report with pathological findings. Brain, 86, 151–60.Google Scholar
Sakane, T. 1997. New perspective on Behçet’s disease [Review]. Int Rev Immunol, 14, 8996.Google Scholar
Saruhan-Direskeneli, G., Akman-Demir, G., Tasçi, B., Serdaroglu, P., and Eraksoy, M. 1996. Local synthesis of oligoclonal IgG is infrequent in Behçet’s disease. Rev Rheumatol, 63 Suppl, 552.Google Scholar
Serdaroglu, P. 1998. Behçet’s disease and the nervous system. J Neurol, 245, 197205.Google Scholar
Serdaroglu, P., Yazici, H., Özdemir, Ç., et al. 1989. Neurologic involvement in Behçet’s syndrome. A prospective study. Arch Neurol, 46, 265–9.Google Scholar
Shakir, R. A., Sulaiman, K., Kahn, R. A., and Rudwan, M. 1990. Neurological presentation of neuro-Behçet’s syndrome: Clinical categories. Eur Neurol, 30, 249–53.Google Scholar
Farrell, Shapiro L. S., Borhani, J. Hag-Highi, A. 2012. Tocilizumab treatment for neuro-Behçet’s disease, the first report. Clin Neurol Neurosurg, 114: 297–8.Google Scholar
Shimizu, T. 1962. Epidemiological and clinico-pathological studies on neuro-Behçet’s syndrome. Adv Neurol Sci (Tokyo), 16, 167–78.Google Scholar
Shimizu, T., Ehrlich, G. E., Inaba, G., and Hayashi, K. 1979. Behçet’s disease. Semin Arthritis Rheum, 8, 223–60.Google Scholar
Stanford, M. R., Kasp, E., Whiston, R., et al. 1994. Heat shock protein peptides reactive in Behçet’s disease are uveitogenic in Lewis rats. Clin Exp Immunol, 97, 226–31.Google Scholar
Suga, M., Sato, K., Nishimura, M., and Oda, M. 1990. An autopsy case of neuro-Behçet’s disease with the middle cerebral artery occlusion on cerebral angiogram. Rinsho Shinkeigaku, 30, 1005–9.Google Scholar
Sugihara, H., Muto, Y., and Tsuchiyama, H. 1969. Neuro-Behçet’s syndrome: Report of two autopsy cases. Acta Pathology (Japan), 19, 95101.Google Scholar
Suzuki, Y., Hoshi, K., Matsuda, T., and Mizushima, Y. 1992. Increased peripheral blood T cells and natural killer cells in Behçet’s disease. J Rheumatol, 19, 588–92.Google Scholar
Tasçi, B., Direskeneli, H., Serdaroglu, P., et al. 1998. Humoral immune response to mycobacterial heat shock protein (HSP) 65 in the cerebrospinal fluid of neuro-Behçet patients. Clin Exp Immunol, 113, 100–4.Google ScholarPubMed
Taşolar, S., Doğan, M., Taşolar, H., et al. 2014. Evaluation of vertebral artery involvement by Doppler sonography in patients with Behçet disease. J Ultrasound Med, 33: 811–6.Google Scholar
Totsuka, S. and Midorikawa, T. 1972. Some clinical and pathological problems in neuro-Behçet’s syndrome. Folia Psychiatrica et Neurologica (Japan), 28, 275–84.Google Scholar
Totsuka, S., Hattori, T., and Yazari, M. 1979. Clinico-pathology of neuro-Behçet’s syndrome. In Kehner, T. and Barnes, C.G., eds., Behçet’s Disease. Clinical and Immunological Features. London: Academic Press, pp. 133–96.Google Scholar
Tsutsui, K., Hasegawa, M., Takata, M., and Takehara, K. 1998. Behçet’s disease. J Rheumatol, 25, 326–8.Google Scholar
Uruyama, A., Sakuragi, S., and Sakai, F. 1979. Angio-Behçet syndrome. In Lehner, T. and Barnes, C. G., eds., Behçet’s Syndrome. Clinical and Immunological Features. London: Academic Press, pp. 176–6.Google Scholar
Wechsler, B., Vidailhet, M., Piette, J. C., et al. 1992. Cerebral venous thrombosis in Behçet’s disease: Clinical study and long term follow-up of 25 cases. Neurology, 42, 614–8.Google Scholar
Wechsler, B., Dell’Isola, B., Vidailhet, M., et al. 1993. Magnetic resonance imaging in 31 patients with Behçet disease and neurological involvement: Prospective study with clinical correlation. J Neurol Neurosurg Psychiatr, 56, 793–8.Google Scholar
Wilkins, M. R., Gove, R. I., Roberts, S. D., and Kendall, M. J. 1986. Behçet’s disease presenting as benign intracranial hypertension. Postgrad Med J, 62, 3641.Google Scholar
Wolf, S. M., Scrotland, D. L., and Phillips, L. L. 1965. Involvement of nervous system in Behçet’s syndrome. Arch Neurol, 12, 315–25.Google Scholar
Yazici, H. 1997. The place of Behçet’s syndrome among the autoimmune diseases. Int Rev Immunol, 14, 110.Google Scholar
Yazici, H. 2002. Behçet’s syndrome: Where do we stand? Am J Med, 112, 75–6.Google Scholar
Yazici, H., Tüzün, Y., Pazarlı, H., et al. 1980. The combined use of HLA-B5 and the pathergy test as diagnostic markers of Behçet’s disease in Turkey. J Rheumatol, 7, 206–10.Google Scholar
Yazici, H., and Moutsopoulos, H. H. 1985. Behçet’s disease. In Lichenstein, L. M. and Fauci, A. S., eds., Current Therapy in Allergy, Immunology and Rheumatology. Philadelphia: Decker, pp. 194–7.Google Scholar
Yazici, H., Basaran, E. G., Hamuryudan, V., et al. 1996. The ten-year mortality in Behçet’s syndrome. Br J Rheumatol, 35, 139–41.Google Scholar
Zelenski, J. D., Caparo, J. A., Holden, D., and Calabrese, L. H. 1989. Central nervous system vasculitis in Behçet’s syndrome: Angiographic improvement after therapy with cytotoxic agents. Arthritis Rheum, 32, 217–20.Google Scholar

References

Akova, Y. A., Kansu, T., and Duman, S. 1993. Pseudotumor cerebri secondary to dural sinus thrombosis in neurosarcoidosis. J Clin Neuroophthalmol, 13, 188–9.Google Scholar
Allen, R. K. A., Sellars, R. E., and Sandstrom, P. A. 2003. A prospective study of 32 patients with neurosarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis, 20, 118–25.Google Scholar
Baughman, R. P. and Lower, E. E. 1997. Steroid-sparing alternative treatments for sarcoidosis. Clin Chest Med, 18, 853–64.Google Scholar
Berek, K., Kiechl, S., Willeit, J., et al. 1993. Subarachnoid hemorrhage as presenting feature of isolated neurosarcoidosis. Clin Investig, 71, 54–6.Google Scholar
Boeck, C. 1899. Multiple benign sarkoid of the skin. J Cutan Dis, 17, 543–50.Google Scholar
Brisman, J.L., Hinduja, A., McKinney, J.S., Gerhardstein, B. 2006. Successful emergent angioplasty of neurosarcoid vasculitis presenting with strokes. Surg Neurol, 66, 402–4.Google Scholar
Brown, M. M., Thompson, A. J., Wedzicha, J. A., and Swash, M. 1989. Sarcoidosis presenting with stroke. Stroke, 20, 400–5.Google Scholar
Burns, T. M. 2003. Neurosarcoidosis. Arch Neurol, 60, 1166–8.Google Scholar
Campbell, J., Kee, R., Bhattacharya, D., et al. 2015. Systemic sarcoidosis presenting with headache and stroke-like episodes. Case Reports Immunol, 2015, Article ID 619865.Google Scholar
Caplan, L., Corbett, J., Goodwin, J., et al. 1983. Neuro-ophthalmologic signs in the angiitic form of neurosarcoidosis. Neurology, 33, 1130–5.Google Scholar
Corse, A. M. and Stern, B. J. 1989. Neurosarcoidosis and stroke. Stroke, 20, 152–3.Google Scholar
Dakdouki, G. K., Kanafani, Z. A., Ishak, G., Hourani, M., and Kanj, S. S. 2005. Intracerebral bleeding in a patient with neurosarcoidosis while on corticosteroid therapy. South Med J, 98, 492–4.Google Scholar
Degardin, A., Devos, P., Vermersch, P., and De Seze, J. 2010. Cerebrovascular symptomatic involvement in sarcoidosis. Acta Neurol Belg, 110, 349352.Google Scholar
Gonzalez-Aramburu, I., Ruiz-Perez, E., Gomez-Roman, J., et al. 2012. Sarcoidosis presenting as transient ischemic attack status. J Stroke Cerebrovasc Dis, 21, 515517.Google Scholar
Hasday, J. D., Bachwich, P. R., Lynch, J. P., et al. 1988. Procoagulant and plasminogen activator activities of bronchoalveolar fluid in patients with pulmonary sarcoidosis. Exp Lung Res, 14, 261–78.Google Scholar
Iannuzzi, M. C., Rybicki, B. A., and Teirstein, A. S. 2007. Sarcoidosis. New Engl J Med, 357, 2153–65.Google Scholar
Kamphuis, L. S., Van Zelm, M. C., and Lam, K. H. 2013. Perigranuloma localization and abnormal maturation of B cells. Am J Respir Crit Care Med, 187, 406–16.Google Scholar
Lareau, C. A., Adrianto, I., Levin, A. M., et al. 2015. Fine mapping of chromosome 15q25 implicates ZNF592 in neurosarcoidosis patients. Ann Clin Transl Neurol, 2, 972–7.Google Scholar
Lower, E. E., Broderick, J. P., Brott, T. G., and Baughman, R. P. 1997. Diagnosis and management of neurological sarcoidosis. Arch Int Med, 157, 1864–8.Google Scholar
Menninger, M. D., Amdur, R. J., and Marcus, R. R., 2003. Role of radiotherapy in the treatment of neurosarcoidosis. Am J Clin Oncol, 26, 115–18.Google Scholar
Moller, D. R. and Chen, E. C. 2002a. Genetic basis of remitting sarcoidosis: triumph of the trimolecular complex? Am J Respir Cell Mol Biol, 27, 391–5.Google Scholar
Moller, D. R. and Chen, E. C. 2002b. What causes sarcoidosis? Curr Opin Pulm Med, 8, 429–34.Google Scholar
Molnar, J., Nijland, M. J., Howe, D., and Nathanielsz, P. W. 2002. Evidence for microvascular dysfunction after prenatal dexamethasone at 0.7, 0.75, and 0.8 gestation in sheep. Am J Physiol Regul Integr Comp Physiol, 283, R5617.Google Scholar
Nakagaki, H., Furuya, J., Nagata, T., et al. 2004. An elder case of neurosarcoidosis associated with brain infarction. Rinsho Shinkeigaku, 44, 81–5.Google Scholar
Nozaki, K. and Judson, M. A., 2012. Neurosarcoidosis: Clinical manifestations, diagnosis and treatment. Presse Med, 41, e33148.Google Scholar
Paleolog, E. M., Delasalle, S. A., Buurman, W. A., and Feldmann, M. 1994. Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells. Blood, 84, 2578–90.Google Scholar
Rybicki, B. A., Iannuzzi, M. C., Frederick, M. M., et al. 2001. Familial aggregation of sarcoidosis: A Case-Controlled Etiologic Study of Sarcoidosis (ACCESS). Am Journal Respir Crit Care Med, 164, 2085–91.Google Scholar
Sah, B. P., Goyal, S., and Iannuzzi, M. C, 2015. Novel pharmacotherapy of sarcoidosis. Pharmacol Therapeut, doi: 10.1016/j.pharmathera.2015.10.001.Google Scholar
Sekhri, V., Sanal, S., DeLorenzo, L.J., et al., 2011. Cardiac sarcoidosis: A comprehensive review. Arch Med Sci, 7 (4), 546554.Google Scholar
Selvi, A., Diakou, M., Giannopoulos, S., et al. 2009. Cerebral venous thrombosis in a patient with sarcoidosis. Intern Med, 48, 723725.Google Scholar
Sethi, K. D., el Gammal, T., Patel, B. R., and Swift, T. R. 1986. Dural sarcoidosis presenting with transient neurologic symptoms. Arch Neurol, 43, 595–7.Google Scholar
Stern, B. J. 2004. Neurological complications of sarcoidosis. Curr Opin Neurol, 17, 311–6.Google Scholar
Taveen, J. O. and Stern, B. J. 2014. Neurosarcoidosis. Continuum (Minneap Minn), 20, 545–59.Google Scholar
Van der Poll, T., Büller, H. R., ten Cate, H., et al. 1990. Activation of coagulation after administration of tumor necrosis factor to normal subjects. N Engl J Med, 322, 1622–7.Google Scholar
Viles-Gonzales, J. F., Pastori, L., Fischer, A., et al., 2013. Supraventricular arrhythmias in patients with cardiac sarcoidosis prevalence, predictors, and clinical implications. Chest, 143, 10851090.Google Scholar
Zajicek, J. P., Scolding, N. J., Foster, O., et al. 1999. Central nervous system sarcoidosis: Diagnosis and management. QJ Med, 92, 103–17.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×