Skip to main content Accessibility help
Twelve Landmarks of Twentieth-Century Analysis
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Müger, Michael 2018. On Ikehara type Tauberian theorems with $$O(x^\gamma )$$ O ( x γ ) remainders. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Vol. 88, Issue. 1, p. 209.


Book description

The striking theorems showcased in this book are among the most profound results of twentieth-century analysis. The authors' original approach combines rigorous mathematical proofs with commentary on the underlying ideas to provide a rich insight into these landmarks in mathematics. Results ranging from the proof of Littlewood's conjecture to the Banach–Tarski paradox have been selected for their mathematical beauty as well as educative value and historical role. Placing each theorem in historical perspective, the authors paint a coherent picture of modern analysis and its development, whilst maintaining mathematical rigour with the provision of complete proofs, alternative proofs, worked examples, and more than 150 exercises and solution hints. This edition extends the original French edition of 2009 with a new chapter on partitions, including the Hardy–Ramanujan theorem, and a significant expansion of the existing chapter on the Corona problem.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
[1] N.H., Abel, Recherches sur la série …, J. für Math. (1826) pp. 311–319.
[2] F., Albiac and N., Kalton, Topics in Banach Space Theory, Berlin, Springer, 2006.
[3] M., Alessandri, Thèmes de Géométrie, Paris, Dunod, 1999.
[4] E., Amar, On the corona problem, J. Geometric Anal., 1 4 (1991) pp. 291–305.
[5] M., Andersson, Topics in Complex Analysis, Berlin, Springer, 1997.
[6] A., Argyros and R., Haydon, A hereditary indecomposable ∞-space that solves the scalar-plus-compact problem, Acta Math. 206, 4 (2011) pp. 1–54.
[7] J., Arias, Pointwise Convergence of Fourier Series,Lecture Notes in Mathematics No.1875, Berlin, Springer, 2002.
[8] M., Artin, Algebra, Englewood Cliffs, NJ, Prentice-Hall, 1991.
[9] W., Arveson, A Short Course on Spectral Theory, Berlin, Springer, 2002.
[10] W., ArvesonAutour du Centenaire Lebesgue, Panoramas et Synthèses no.18, Paris, Société Mathématique de France, 2004.
[11] J., Bak and D.J., Newman, Complex Analysis, Berlin, Springer, 1999.
[12] S., Banach, Sur le problème de la mesure, Fund. Math. 4 (1923) pp. 7–33.
[13] S., Banach, Un théorème sur les transformations biunivoques, Fund. Math. 6 (1924) pp. 236–239.
[14] S., Banach and A., Tarski, Sur la décomposition des ensembles de points en parties respectivement congruentes, Fund. Math. 6 (1924) pp. 244–277.
[15] N., Bary, A Treatise on Trigonometric Series, Vols. 1 & 2, Oxford, Pergamon Press, 1964.
[16] D., Bellay, La résolution de la conjecture de Littlewood, Mémoire de DEA (avec A. Bonami), Université d'Orléans, 2002.
[17] L., Bernal-Gonzàlez, Lineability of sets of nowhere analytic functions, J. Math. Anal. Appl. 340 (2008) pp. 1284–1295.
[18] B., Berndtsson, A., Chang and K. C., Lin, Interpolating sequences in the polydisk, Trans. Amer. Math. Soc. 302, 1 (1987) pp. 161–169.
[19] B., Berndtsson and T., Ransford, Analytic multifunctions, the ∂-equation, and a proof of the corona theorem, Pacific J. Math. 124, 1 (1986) pp. 57–72.
[20] P., Billinglsey, Ergodic Theory and Information, New York, John Wiley & Sons, Inc., 1965.
[21] P., Billingsley, Probability and Measure, 3rd edn, New York, JohnWiley & Sons, Inc., 1995.
[22] R., Blei, Analysis in Integer and Fractional Dimensions, Cambridge, Cambridge University Press, 2001.
[23] R., Blei and T.W., Kőrner, Combinatorial dimension and random sets, Israel J. Math. 47 (1984) pp. 65–74.
[24] R. P., Boas, A Primer of Real Functions, Carus Mathematical Monographs No. 13, Washington, D.C., Mathematical Association of America, 1996.
[25] S.V., Bočkarëv, Logarithmic growth of arithmetic means of Lebesgue functions of bounded orthonormal systems, Dokl. Akad. Nauk SSSR 223 (1975) pp.16–19. English translation in Soviet Math. Dokl. 16 (1975).
[26] P., du Bois-Reymond, Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Änderungen in den kleinsten Intervallen, J. für Math. 79 (1875) p. 28.
[27] E., Bombieri and J., Bourgain, A remark on Bohr's inequality, Int. Math. Res. Notes (2004) pp. 4307–4330.
[28] J., Bourgain, On finitely generated closed ideals in H∞ (D), Ann. Inst. Fourier 35, 4 (1985) pp. 163–174.
[29] J., Bourgain, A problem of Rudin and Douglas on factorization, Pacific J. Math. 121, 1 (1986) pp. 47–50.
[30] J., Bourgain, On Λ(p)-subsets of squares, Israel J. Math. 67, 3 (1989) pp. 291–311.
[31] H., Brézis, Analyse Fonctionnelle, Paris, Dunod, 1994.
[32] A. M., Bruckner, J. B., Bruckner and B. S., Thomson, Real Analysis, Englewood Cliffs, NJ, Prentice-Hall, 1997.
[33] M., Bruckner and G., Petruska, Some typical results on bounded Baire one functions, Acta Math. Hung. 43, 3&4 (1984) pp. 325–333.
[34] B., Carl and I., Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge, Cambridge University Press, 1990.
[35] L., Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958) pp. 921–930.
[36] L., Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. Math. 76 (1962) pp. 547–559.
[37] U., Cegrell, A generalization of the corona theorem in the unit disk, Math. Z. 203 (1990) pp. 255–261.
[38] Ch., Cellérier, Note sur les principes fondamentaux de lapos;analyse, Bull Sci. Mathématiques 14 (1890) pp. 143–160.
[39] K., Chandrasekharan, Classical Fourier Transforms, Berlin, Springer, 1989.
[40] Y. S., Chow and H., Teicher, Probability Theory, 3rd edn. Berlin, Springer, 2003.
[41] K. L., Chung, A Course in Probability Theory, New York, Academic Press, 2001.
[42] P., Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960) pp. 191–212.
[43] C., Cowen and B., McCluer, Composition Operators on Spaces of Analytic Functions, Boca Raton, FL, CRC Press, 1995.
[44] H., Davenport, On a theorem of P. Cohen, Mathematika 7, 2 (1960) pp. 93–97.
[45] A. M., Davie, The approximation problem for Banach spaces, Bull. London Math. Soc. 5 (1973) pp. 261–266.
[46] Ph. J., Davis, Interpolation and Approximation, London, Dover Publications, 1975.
[47] H., Delange, Généralisation du théorème de Ikehara, Ann. Sc. Éc. Norm. Sup. 3,71 (1954) pp. 213–242.
[48] J., Diestel, H., Jarchow and A., Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics No. 43, Cambridge, Cambridge University Press, 1995.
[49] J., Dixmier, Les moyennes invariantes dans les semi-groupes et leurs applications, Acta Sci. Math.(Szeged) 12 (1950) pp. 213–227.
[50] W. F., Donoghue, The lattice of invariant subspaces of a completely continuous quasinilpotent transformation, Pacific J. Math. 7 (1957), pp. 1031–1935.
[51] J., Dugundji, Topology, Boston, Allyn and Bacon, 1966.
[52] J. J., Duistermaat, Selfsimilarity of Riemannapos;s nondifferentiable function, Nieuw Archief voor Wiskunde 9 (1991) pp. 303–337.
[53] P., Duren, Theory of H p Spaces, 2nd edn, London, Dover Publications, 2000.
[54] P., Duren and A., Schuster, Bergman Spaces, Mathematical Surveys and Monographs No. 100, Providence, RI, AMS, 2004.
[55] A., Dvoretsky and P., Erdős, On power series diverging everywhere on the circle of convergence, Michigan Math. J. 3 (1955–1956) pp. 31–35.
[56] P., Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973) pp. 309–317.
[57] P., Erdős, On a problem of Sidon in additive number theory, Acta Sci. Math.(Szeged) 15 (1953–1954) pp. 255–259.
[58] P., Erdős, A., Hildebrand, A., Odlyzko, P., Pudaite and B., Reznick, A very slowly convergent sequence, Math. Mag. 58 (1985) pp. 51–52.
[59] P., Erdős, A., Hildebrand, A., Odlyzko, P., Pudaite and B., Reznick, The asymptotic behaviour of a family of sequences, Pacific J. Math. 126, 2 (1985) pp. 227–241.
[60] P., Eymard and J. P., Lafon, Autour du nombre π, Paris, Hermann, 1999.
[61] C., Fefferman and E., Stein, H p spaces of several variables, Acta Math. 129 (1972) pp. 137–193.
[62] V., Ferenczi, A uniformly convex hereditarily indecomposable space, Israel J. Math. 102 (1997) pp. 199–225.
[63] V., Ferenczi, Operators on subspaces of hereditarily indecomposable spaces, Bull. London. Math. Soc. 29 (1997) pp. 338–344.
[64] T., Gamelin, Uniform Algebras, Englewood Cliffs, NJ, Prentice-Hall, 1969.
[65] T., Gamelin, Wolffapos;s proof of the corona theorem, Israel J. Math. 37 (1980) pp. 113–119.
[66] J., Garnett, Bounded Analytic Functions, revised first edition, Berlin, Springer, 2007.
[67] I., Gelfand, D., Raikov and G., Shilov, Commutative Normed Rings, Providence, RI, AMS Chelsea, 1964.
[68] J., Gerver, The differentiability of the Riemann function at certain rational multiples of π, Amer. J. Math. 92 (1970) pp. 33–55.
[69] T., Gowers, A new dichotomy for Banach spaces, Geom. Funct. Anal. 6 (1996) pp. 1083–1093.
[70] T., Gowers, A solution to the Schrőder–Bernstein problem for Banach spaces, Bull. London Math. Soc. 28 (1996) pp. 297–304.
[71] T., Gowers and B., Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993) pp. 851–874.
[72] V., Gurariy and W., Lusky, Geometry of Müntz Spaces and Related Questions, Lecture Notes in Mathematics No. 1870, Berlin, Springer, 2005.
[73] G. H., Hardy, Theorems relating to the summability and convergence of slowly oscillating series, Proc. London Math. Soc. 2,8 (1910) pp. 301–320.
[74] G. H., Hardy, Weierstrassapos;s non-differentiable function, Trans. Amer. Math. Soc. 17 (1916) pp. 301–325.
[75] G. H., Hardy, Some famous problems of the theory of numbers, and in particular Waring's problem; an Inaugural Lecture delivered before the University of Oxford at the Clarendon Press, 1920.
[76] G. H., Hardy, Divergent Series, Oxford, Clarendon Press, 1949 (3rd edn, 1967).
[77] G. H., Hardy, Collected Papers, Oxford, Clarendon Press, 1974.
[78] G. H., Hardy, L'Apologie d'un Mathématicien, Paris, Belin, 1985.
[79] G. H., Hardy, Ramanujan, Providence, RI, AMS Chelsea, 1991.
[80] G. H., Hardy, Divergent Series, Providence, RI, AMS Chelsea, 1991.
[81] G. H., Hardy and J. E., Littlewood, Some problems of Diophantine approximation(II): The trigonometrical series associated with the elliptic θfunctions, Acta Math. 37 (1914) pp. 193–238.
[82] G. H., Hardy and J. E., Littlewood, A new solution of Waringapos;s problem, Quart. J. Math., 48 (1920) pp. 272–293.
[83] G. H., Hardy and J. E., Littlewood, A new proof of a theorem on rearrangements, J. London Math. Soc. 23 (1948) pp. 163–168.
[84] G. H., Hardy and S., Ramanujan, Asymptotic formulœ for the distribution of integers of various types, Proc. London Math. Soc. 2, 16 (1917) pp. 112–132.
[85] G. H., Hardy and S., Ramanujan, Asymptotic formulœ in combinatory analysis, Proc. London Math. Soc. 2,17 (1918) pp. 75–115.
[86] G. H., Hardy and M., Riesz, The General Theory of Dirichlet Series, Cambridge, Cambridge Tracts in Mathematics and Mathematical Physics No. 18, 1915.
[87] G. H., Hardy and E.M., Wright, An Introduction to the Theory of Numbers, 5th edn, Oxford, Oxford University Press, 1979.
[88] F., Hausdorff, Grundzüge der Mengenlehre, Berlin, Veit, 1914.
[89] E., Hlawka, J., Schoissengeier and H., Taschner, Geometric and Analytic Number Theory, Berlin, Springer, 1991.
[90] K., Hoffman, Banach Spaces of Analytic Functions, Englewood Cliffs, NJ, Prentice-Hall, 1962.
[91] M., Holschneider and Ph., Tchamitchian, Pointwise analysis of Riemannapos;s non differentiable function, Invent. Math. 105 (1991) pp. 157–175.
[92] L., Hőrmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967) pp. 943–949.
[93] V., Hugo, Oeuvres Poétiques, Vol. 2, Paris, Bibliothèque de la Pleacute;iade, 1967.
[94] A. E., Ingham, On Wienerapos;s method in Tauberian theorems, Proc. London Math. Soc. 2,38 (1933–1934) pp. 458–480.
[95] S., Itatsu, Differentiability of Riemannapos;s function, Proc. Japan. Acad. Ser.A 57 (1981) pp. 492–495.
[96] S., Jaffard, The spectrum of singularities of Riemannapos;s function, Revista Matematica Iberoamericana 12,2 (1996) pp. 441–460.
[97] S., Jaffard, Y., Meyer and R. D., Ryan, Wavelets, Tools for Science and Technology, Philadelphia, Society for Industrial and Applied Mathematics, 2001.
[98] F., John, Extremum problems with inequalities as subsidiary conditions, Couran Anniversary Volume, New York, Wiley-Interscience, 1948, pp. 187–204.
[99] M. I., Kadeč and M. G., Snobar, Some functionals over a compact Minkowski space, Math. Notes 10 (1971) pp. 694–696.
[100] J. P., Kahane, Sur certaines classes de séries de Fourier absolument convergentes, J. Math. Pures et Appliquées 35 (1956) pp. 249–259.
[101] J. P., Kahane, Séries de Fourier Absolument Convergentes, Berlin, Springer, 1970.
[102] N., Kalton, Spaces of compact operators, Math. Annal. 208 (1974) pp. 267–278.
[103] Y., Katznelson, Sur les fonctions opérant sur lapos;algèbre des séries de Fourier absolument convergentes, C.R.A.S. 247 (1958) pp. 404–406.
[104] Y., Katznelson, An Introduction to Harmonic Analysis, 3rd edn, Cambridge, Cambridge University Press, 2004.
[105] Y., Katznelson and K., Stromberg, Everywhere differentiable, nowhere monotone, functions, Am. Math. Monthly 81 (1974) pp. 349–354.
[106] P. B., Kennedy and P., Szüsz, On a bounded increasing power series, Proc. Amer. Math. Soc. (1966) pp. 580–581.
[107] S.V., Kisliakov, On spaces with small annihilators, Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 73 (1978) pp. 91–101.
[108] S.V., Kisliakov, Fourier coefficients of boundary values of functions analytic in the disc and in the bidisc, Trudy Matem. Inst. im. V.A. Steklova 155 (1981) pp. 77–94 (in Russian).
[109] I., Klemes, A note on Hardyapos;s inequality, Canad. Math. Bull. 36 (1993) pp. 442–448.
[110] H., Koch, Number Theory: Algebraic Numbers and Functions, Graduate Studies in Mathematics No. 24, Providence, RI, American Mathematical Society, 2000.
[111] S.V., Konyagin, On the Littlewood problem, Izv. A. N. SSSR, ser. mat. 45,2 (1981) pp. 243–265. English translation inMath. USSR-Izv. 18,2 (1982) pp. 205–225.
[112] P., Koosis, Lectures on H p Spaces, London, London Mathematical Society Lecture Notes Series 40, 1980.
[113] J., Korevaar, Tauberian Theory, a Century of Developments, Berlin, Springer, 2004.
[114] T., Kőrner, The Behaviour of Power Series on their Circle of Convergence, Lecture Notes in Mathematics No. 995, Berlin, Springer, 1983, pp. 56–94.
[115] P., Koszmider, Banach spaces of continuous functions with few operators, Math. Annal. 330 (2004) pp. 151–183.
[116] L., Kronecker, Quelques remarques sur la détermination des valeurs moyennes, C.R.A.S. 103 (1887) pp. 980–987.
[117] S., Lang, Real and Functional Analysis, 3rd edn, Berlin, Springer, 1993.
[118] P. D., Lax, Functional Analysis, Chichester, John Wiley & Sons, 2002.
[119] H., Lebesgue, Sur une généralisation de lapos;intégrale définie, C.R.A.S. 132 (1901) pp. 1025–1031.
[120] D., Li and H., Queffélec, Introduction à lapos;Étude des Espaces de Banach, Analyse et Probabilités, Cours spécialisé de la SMF No. 12, 2004.
[121] J., Lindenstrauss, Some aspects of the theory of Banach spaces, Adv. Math. 5 (1970) pp. 159–180.
[122] J., Lindenstrauss and L., Tzafriri, On the complemented subspaces problem, Israel. J. Math. 9 (1971) pp. 263–269.
[123] J., Lindenstrauss and L., Tzafriri, Classical Banach Spaces I, Sequence Spaces, Berlin, Springer, 1977.
[124] J. E., Littlewood, The converse of Abelapos;s theorem on power series, Proc. London Math. Soc. 2, 9 (1911) pp. 434–448.
[125] J. E., Littlewood, Littlewoodapos;s Miscellany, Cambridge, Cambridge University Press, 1986.
[126] G. G., Lorentz, Approximation of Functions, Providence, RI, AMS Chelsea, 1986.
[127] O. C., McGehee, L., Pigno and B., Smith, Hardyapos;s inequality and the L1-norm of exponential sums, Annals of Math. 113 (1981) pp. 613–618.
[128] R., Meise and D., Vogt, Introduction to Functional Analysis, Oxford, Clarendon Press, 1997.
[129] H. L., Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS No. 84, Providence, RI, American Mathematical Society, 1994.
[130] L., Mordell, The approximate functional formula, J. London Math. SocM. 1 (1926) pp. 68–72.
[131] F., Nazarov, Some remarks on the Smith–Pigno#x2013;McGehee proof of the Littlewoodapos;s conjecture, St. Petersburg Math. J. 7, 2 (1996) pp. 265–275.
[133] D. J., Newman, A simple proof ofWienerapos;s theorem, Proc. Amer. Math. Soc. 48, 1 (1975) pp. 264–265.
[134] D. J., Newman, Simple analytic proof of the prime number theorem, Amer. Math. Monthly 87, 9 (1980) pp. 693–696.
[135] D. J., Newman, Analytic Number Theory, Berlin, Springer, 1998.
[136] N., Nikolskii, Treatise on the Shift Operator, Berlin, Springer, 1986.
[137] N., Nikolskii, In search of the invisible spectrum, Ann. Inst. Fourier 49, 6 (1999) pp. 1925–1998.
[138] I., Niven, Irrational Numbers, Carus Mathematical Monographs No. 11, Washington, D.C., Mathematical Association of America, 2006.
[139] A. M., Olevskii, Fourier series and Lebesgue functions, Usp. Mat. Nauk 22, 3, 135 (1967) pp. 237–239.
[140] B., Osofsky and S., Adams, Some rotations of ℝ3, solution of problem 6102, Amer. Math. Monthly 85, 6 (1978) pp. 504–505.
[141] J., Partington, Interpolation, Identification and Sampling, Oxford, Oxford University Press, 1997.
[142] V., Peller and S.V., Khruscev, Hankel operators, best approximation and stationary Gaussian processes, Russian Math. Surveys 37 (1982), pp. 61–144.
[143] V., Peller, Hankel Operators and their Applications, Berlin, Springer, 2003.
[144] S. K., Pichorides, Norms of Exponential Sums, Publications Mathématiques dapos;Orsay No. 77–73, 1977.
[145] S. K., Pichorides, On the L1-norm of exponential sums, Ann. Inst. Fourier 30, 2 (1980) pp. 79–89.
[146] G., Pisier, Counterexamples to a conjecture of Grothendieck, Séminaire de lapos;École Polytechnique, 1982, pp. 1–35.
[147] G., Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge, Cambridge University Press, 1989.
[148] D., Pompeiu, Sur les fonctions dérivées, Math. Ann. 63 (1907) pp. 326–332.
[149] K., Prachar, Primzahlverteilung, Berlin, Springer, 1957.
[150] H., Queffélec, Dérivabilité de certaines sommes de seacute;ries de Fourier lacunaires,C.R.A.S. 273 série A (1971) pp. 291–293.
[151] H., Queffélec, Lapos;inégalité de Vinogradov et ses conséquences, Publications Mathématiques dapos;Orsay 81–08, exposé No. 4, pp. 1–15.
[152] H., Queffélec, Topologie, 4th edn, Paris, Dunod, 2012.
[153] H., Queffélec and C., Zuily, Analyse pour lapos;Agrégation, 4th edn, Paris, Dunod, 2013.
[154] J., Racine, Oeuvres Complètes, Vol. 1, Bibliothèque de la Pléiade, 1999.
[155] H., Rademacher, On the partition function p(n), Proc. London Math. Soc 2, 43 (1937) pp. 241–254.
[156] K., Rao, On a generalized corona problem, J. Analyse Math. 18 (1967) pp. 277–278.
[157] R., Remmert, Classical Topics in Complex Function Theory, Berlin, Springer, 1998.
[158] L., Rodriguez-Piazza, On the mesh condition for Sidon sets, pre-print.
[159] W., Rudin, Fourier Analysis on Groups, New York, Wiley-Interscience, 1962.
[160] W., Rudin, Real and Complex Analysis, 3rd edn, New York, McGraw-Hill, 1987.
[161] W., Rudin, Analyse Fonctionnelle, Paris, Ediscience International, 1995.
[162] W., Rudin, A converse to the high indices theorem, Proc. Amer. Math. Soc. 17 (1966) pp. 434&435.
[163] V., Runde, Lectures on Amenability, Lecture Notes in Mathematics No. 1774, Berlin, Springer, 2002.
[164] R., Salem, On a problem of Littlewood, Amer. J. Math. 77 (1955) pp. 535–540.
[165] D., Sarason, A remark on the Volterra operator, J. Math. Anal. Appl. 12 (1965), pp. 244–246.
[166] A., Selberg, Reflections around the Ramanujan centenary, in Collected Papers, Vol. 1, Berlin, Springer, 1989, pp. 695–701.
[167] N., Sibony, Prolongement analytique des fonctions holomorphes bornées, C.R.A.S. 275 (1972) pp. 973–976.
[168] E. M., Stein and R., Shakarchi, Complex Analysis, Princeton, NJ, Princeton University Press, 2003.
[169] E. M., Stein and R., Shakarchi, Real Analysis, Princeton, NJ, Princeton University Press, 2005.
[170] K., Stromberg, The Banach–Tarski paradox, Amer. Math. Monthly 86 (1979) pp. 151–161.
[171] S., Szarek, The finite-dimensional basis problem with an appendix on nets of Grassmann manifolds, Acta Math. 151 (1983) pp. 153–179.
[172] J., Tannery and J., Molk, Traité des Fonctions Elliptiques, Paris, Gauthier-Villars, 1893.
[173] A., Tauber, Ein Satz aus der Theorie der unendlichen Reihen, Monatsh. f. Mathematiku. Physik 8 (1897) pp. 273–277.
[174] G., Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Cours spécialisé de la SMF, 1995.
[175] G., Tenenbaum and M., Mendés-France, Les nombres premiers, PUF, Collection Que sais-je?, 1997.
[176] E. C., Titchmarsh, The Theory of Functions, Oxford, Oxford Science Publications, 1932.
[177] E. C., Titchmarsh, The Theory of the Riemann Zeta Function, revised by D.R.Heath-Brown, Oxford, Oxford Science Publications, 1986.
[178] N., Tomczak#x2013;Jaegermann, Banach–Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, Oxford, Longman-Wiley, 1983.
[179] S., Treil, Estimates in the corona theorem and ideals of H∞, a problem of T. Wolff, J. Analyse Math. 87 (2002) pp. 481–4950.
[180] B. S., Tsirelson, Not every Banach space contains lp or c0, Funct. Anal. Appl. 8 (1974) pp. 139#x2013;141.
[181] S., Uchiyama, On the mean modulus of trigonometric polynomials whose coefficients have random sign, Proc. Amer.Math. Soc. 16 (1965) pp. 1185–1190.
[182] W. A., Veech, A Second Course in Complex Analysis, San Francisco, CA, Benjamin, 1967.
[183] S., Wagon, The Banach–Tarski Paradox, Cambridge, Cambridge University Press, 1985.
[184] C. E., Weil, On nowhere monotone functions, Proc. Amer. Math. Soc. 56 (1976) pp. 388–389.
[185] A., Wells and B., Williams, Embeddings and Extensions in Analysis, Berlin, Springer, 1970.
[186] N., Wiener, Tauberian theorems, Annals of Math. 33 (1932) pp. 1–100.
[187] N., Wiener, The Fourier Integral and Certain of its Applications, Cambridge, Cambridge University Press, 1933 (republished by Dover in 1958).
[188] P., Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, Cambridge, Cambridge University Press, 1991.
[189] T., Wolff, Some theorems on vanishing mean oscillation thesis, University of California, Berkeley, CA 1979.
[190] T., Wolff, A refinement of the corona theorem, inLinear and Complex Analysis Problem Book, 199 Research Problems, Lecture Notes in Mathematics No.1043, Berlin, Springer, 1984, pp. 399–400.
[191] K., Yosida, Functional Analysis, Berlin, Springer, 1980.
[192] D., Zagier, Newmanapos;s short proof of the prime number theorem, Amer. Math. Monthly 104, 8 (1997) pp. 705–708.
[193] Z., Zalcwasser, Sur les polynômes associeés aux fonctions modulaires θ, Stud. Math. 7 (1937) pp. 16–35.
[194] M., Zippin, Extension of bounded linear operators, inHandbook of the Geometry of Banach Spaces, Vol. 2, Amsterdan, North-Holland, 2003, pp. 1703–1741.
[195] A., Zygmund, Smooth functions, Duke Math. J. 12 (1945), pp. 47–76.
[196] A., Zygmund, Trigonometric Series, 2nd edn, Cambridge, Cambridge University Press, 1959.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed