Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2011
  • Online publication date: May 2011

64 - Ecology and use of old-growth and recovering montane oak forests in the Cordillera de Talamanca, Costa Rica

from Part VII - Cloud forest conservation, restoration, and management issues

Summary

ABSTRACT

During the last century, substantial parts of old-growth forest (OGF) in the Cordillera de Talamanca, Costa Rica, were clear-cut. However, in many areas, secondary forests (SEC) have become established on abandoned agricultural land. Based on new and published data, this chapter compares upper montane OGF and SEC stands on the Pacific slope of the Cordillera in terms of differences in plant diversity, stand structure, biogeochemical cycles, and forest use. Furthermore, an attempt is made to assess the potential for, and timescale of, recovery of various forest characteristics during regrowth. Oak species (Quercus spp.) are present in all successional stages. Alpha-diversity of terrestrial, vascular plant species is significantly higher in early- and mid-successional stands than in OGF, probably due to downslope migration of sub-alpine and alpine terrestrial herb species to cleared and abandoned sites. Beta-diversity is seen to decline during succession. Values of stand leaf area in early-successional stages were similar to those observed in OGF, but biomass of epiphytes was significantly lower in SEC (160–520 kg ha−1) compared to OGF (3400 kg ha−1). Rainfall interception was much higher in OGF (25% of gross precipitation) than in SEC (9% and 15% for early- and mid-successional SEC, respectively), despite similar leaf area for OGF and SEC. A combined experimental and modeling study suggested that the epiphyte layer contributed little (6%) to overall rainfall interception in the OGF and could, therefore, not explain the observed hydrological differences between the various successional stages. Instead, these are thought rather to reflect differences in canopy roughness. […]

References
Ataroff, M. A. (1998). Importance of cloud water in Venezuelan Andean cloud forest water dynamics. In Proceedings of the 1st International Conference on Fog and Fog Collection, eds. Schemenauer, R. S. and Bridgman, H. A., pp. 25–28. Ottawa, Canada: IDRC.
Blaser, J. (1987). Standörtliche und waldkundliche Analyse eines Eichenwolkenwaldes (Quercus spp.) der Montanstufe in Costa Rica. Göttinger Beiträge zur Land- und Forstwirtschaft in den Tropen und Subtropen No. 27. Göttingen, Germany: Institute for Silviculture, University of Göttingen.
Bruijnzeel, L. A. (2001). Hydrology of tropical montane cloud forests: a reassessment. Land Use and Water Resources Research 1: 1–18.
Bruijnzeel, L. A., and Proctor, J. (1995). Hydrology and biochemistry of tropical montane cloud forests: what do we really know? In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 38–78. New York: Springer-Verlag.
Cavelier, J., Jaramillo, M., Solis, D., and DeLeon, D. (1997). Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest, Panama. Journal of Hydrology 193: 83–96.
Clark, K. L., Nadkarni, N. M., Schaeffer, D., and Gholz, H. L. (1998). Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. Journal of Tropical Ecology 14: 27–45.
Ewel, J. J. (1980). Tropical succession: manifold routes to maturity. Biotropica 12: 2–7.
Fleischbein, K., Wilcke, W., Goller, R., et al. (2005). Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties. Hydrological Processes 19: 1355–1371.
García-Rojas, M. (2006). Diet and habitat preference of the Resplendent Quetzal (Pharomachrus mocinno costaricensis) in Costa Rican montane oak forests. In Ecology and Conservation of Neotropical Montane Oak Forests, ed. Kappelle, M., pp. 325–336. Berlin: Springer-Verlag.
Hafkenscheid, R. L. L. J. (2000). Hydrology and biogeochemistry of tropical montane rain forests of contrasting stature in the Blue Mountains, Jamaica. Ph.D. thesis, VU University Amsterdam, Amsterdam, the Netherlands. Also available at http://dare.ubvu.vu.nl/bitstream/1871/12734/1/tekst.pdf.
Hartig, K. and Beck, E. (2003). The bracken fern (Pteridium arachnoideum Kaulf.) dilemma in the Andes of Southern Ecuador. Ecotropica 9: 3–13.
Helmer, E. H. (2000). The landscape ecology of tropical secondary forest in montane Costa Rica. Ecosystems 3: 98–114.
Hertel, D., Leuschner, Ch., and Hölscher, D. (2003). Size and structure of fine root systems in old-growth and secondary tropical montane forests (Costa Rica). Biotropica 35: 143–153.
Hertel, D., Hölscher, D., Köhler, L., and Leuschner, Ch. (2006). Changes in fine root system size and structure during secondary succession in a Costa Rican montane oak forest. In Ecology and Conservation of Neotropical Montane Oak Forests, ed. Kappelle, M., pp. 283–297. Berlin: Springer-Verlag.
Hölscher, D. (2004). Leaf traits and photosynthetic parameters of saplings and adult trees of co-existing species in a temperate broad-leaved forest. Basic and Applied Ecology 5: 163–172.
Hölscher, D., , T. D. de A., Möller, R. F., Denich, M., and Fölster, H. (1998). Rainfall partitioning and related hydrochemical fluxes in a diverse and in a mono specific (Phenakospermum guyannense) secondary vegetation stand in Eastern Amazonia. Oecologia 114: 251–257.
Hölscher, D., Köhler, L., Leuschner, Ch., and Kappelle, M. (2003). Nutrient fluxes in stemflow and throughfall in three successional stages of an upper montane rain forest in Costa Rica. Journal of Tropical Ecology 19: 557–565.
Hölscher, D., Köhler, L., Dijk, A. I. J. M., and Bruijnzeel, L. A. (2004). The importance of epiphytes in rainfall interception by a tropical montane rainforest in Costa Rica. Journal of Hydrology 292: 308–322.
Hölscher, D., Mackensen, J., and Roberts, J. M. (2005). Forest recovery in the humid tropics: changes in vegetation structure, nutrient pools and the hydrological cycle. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 598–621. Cambridge, UK: Cambridge University Press.
Holwerda, F., Burkard, R., Eugster, W., et al. (2006). Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methods. Hydrological Processes 20: 2669–2692.
Holwerda, F., Bruijnzeel, L. A., Muñoz, L. E., Equihua, M., and Asbjornsen, H. (2010). Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico. Journal of Hydrology 384: 84–96.
,Instituto Meteorológico Nacional (1988). Catastro de las series de precipitaciones medidas en Costa Rica. San José, Costa Rica: Ministerio de Recursos Naturales, Energía y Minas.
Jongman, R. H. G., Braak, C. F. J., and Tongeren, O. F. R. (1987). Data Analysis in Community and Landscape Ecology. Wageningen, the Netherlands: Pudoc Publishers.
Kappelle, M. (1991). Distribución altitudinal de la vegetación del Parque Nacional Chirripó, Costa Rica. Brenesia 36: 1–14.
Kappelle, M. (1996). Los bosques de roble (Quercus) de la Cordillera de Talamanca, Costa Rica: Biodiversidad, ecología, conservación y desarrollo. Santo Domingo de Heredia: Instituto Nacional de Biodiversidad, and Amsterdam, the Netherlands: University of Amsterdam.
Kappelle, M. (2004). Tropical forests: tropical montane forests. In Encyclopaedia of Forest Sciences, eds. Burley, J., Evans, J., and Youngquist, J. A., pp. 1782–1793.Oxford, UK: Elsevier.
Kappelle, M., and Juárez, M. E. (1994). The Los Santos Forest Reserve: a bufferzone vital for the Costa Rican La Amistad Biosphere Reserve. Environmental Conservation 21: 166–169.
Kappelle, M., and Juárez, M. E. (1995). Agroecological zonation along an altitudinal gradient in the montane belt of the Los Santos Forest Reserve in Costa Rica. Mountain Research and Development 15: 19–37.
Kappelle, M., Kennis, P. A. F., and Vries, R. A. J. (1995a). Changes in diversity along a successional gradient in a Costa Rican upper montane Quercus forest. Biodiversity and Conservation 4: 10–34.
Kappelle, M., Uffelen, J. G., and Cleef, A. M. (1995b). Altitudinal zonation of montane Quercus forests along two transects in the Chirripó National Park, Costa Rica. Vegetatio 119: 119–153.
Kappelle, M., Geuze, T., Leal, M., and Cleef, A. M. (1996). Successional age and forest structure in a Costa Rican upper montane Quercus forest. Journal of Tropical Ecology 12: 681–698.
Kappelle, M., Avertin, G., Juárez, M. E., and Zamora, N. (2000). Useful plants within a campesino community in a Costa Rican montane cloud forest. Mountain Research and Development 20: 162–171.
Köhler, L., Tobón, C., Frumau, K. F. A., and Bruijnzeel, L. A. (2007). Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica. Plant Ecology 193: 171–184.
Köhler, L., Hölscher, D., and Leuschner, Ch. (2008). High litterfall in old-growth and secondary upper montane forest of Costa Rica. Plant Ecology, doi:10.1007/s11258–008–9421–2.
Kumaran, S., (2008). Hydrometeorology of tropical montane rain forests of Gunung Brinchang, Pahang Darul Makmur, Malaysia. Ph.D. thesis, University of Putra Malaysia, Serdang, Malaysia.
McJannet, D., Wallace, J. S., and Reddell, P. (2007). Precipitation interception in Australian tropical rainforests. II. Altitudinal gradient of cloud interception, stemflow, throughfall and interception. Hydrological Processes 21: 1703–1718.
Moser, G., Hertel, D., and Leuschner, Ch. (2007). Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10: 924–935.
Nadkarni, N. M. (2000). Colonization of stripped branch surfaces by epiphytes in a lower montane cloud forest, Monteverde, Costa Rica. Biotropica 32: 358–363.
Nadkarni, N. M., Schaefer, D., Matelson, T. J., and Solano, R. (2004). Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. Forest Ecology and Management 198: 223–236.
Odum, H. T. (1970). Summary: an emerging view of the ecological system at el Verde. In A Tropical Rainforest, eds. Odum, H. T. and Pidgeon, R. F., pp. I-199–I-289. Washington, DC: U.S. Atomic Energy Commission.
Prskawetz, M., and Lexer, M. J. (2000). Evaluierung des LI-COR LAI-2000 zur Ermittlung des Blattflächenindex in Buchenjungbeständen. Allgemeine Forst und Jagd-Zeitung 171: 185–191.
Roberts, J. M., Cabral, O. M. R., Costa, J. P. da, McWilliam, A. -L. C., and , T. D. de A. (1996). An overview of the leaf area index and physiological measurements during ABRACOS. In Amazonian Deforestation and Climate, eds. Gash, J. H. C., Nobre, C. A., Roberts, J. M., and Victoria, R., pp. 287–305. New York: John Wiley.
Roberts, J. M., Gash, J. H. C., Tani, M., and Bruijnzeel, L. A. (2005). Controls on evaporation in lowland tropical rainforest. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 287–313. Cambridge, UK: Cambridge University Press.
Stadtmüller, T. (1987). Cloud Forests in the Humid Tropics: A Bibliographic Review. Turrialba, Costa Rica: CATIE, and Tokyo: The United Nations University.
Steinhardt, U. (1979). Untersuchungen über den Wasser- und Nährstoffhaushalt eines andinen Wolkenwaldes in Venezuela. Göttingen, Germany: Göttinger Bodenkundliche Berichte 56: 1–185.
Tanner, E. V. J. (1980). Studies on the biomass and productivity in a series of montane rain forests in Jamaica. Journal of Ecology 68: 573–588.
Dijk, A. I. J. M., and Bruijnzeel, L. A. (2001). Modelling rainfall interception by vegetation of variable density using an adapted analytical model. I. Model description. Journal of Hydrology 247: 230–238.
Omme, L. (1998). Present Vegetation Patterns and Deforestation Trends over the Past 55 Years in a High Altitude Cloud Forest Watershed Area, Costa Rica, Internal Report No. 311. Amsterdam, the Netherlands: Hugo de Vries Laboratory, University of Amsterdam.
Weaver, P. L. (1972). Cloud moisture interception in the Luquillo Mountains of Puerto Rico. Caribbean Journal of Science 12: 129–144.