Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T03:43:40.111Z Has data issue: false hasContentIssue false

1 - Theoretical perspectives on bottom-up and top-down interactions across ecosystems

from Part I - Theory

Published online by Cambridge University Press:  05 May 2015

Shawn J. Leroux
Affiliation:
University of Newfoundland
Michel Loreau
Affiliation:
Station d’Ecologie Expérimentale du CNRS
Torrance C. Hanley
Affiliation:
Northeastern University, Boston
Kimberly J. La Pierre
Affiliation:
University of California, Berkeley
Get access

Summary

Introduction

The study of the determinants of biomass pyramids (i.e., the patterns of biomass of organisms at different trophic levels of an ecosystem) within and across ecosystems is an enduring endeavor in the ecological sciences (Gripenberg and Roslin, 2007; Gruner et al., 2008). This classic ecological problem still fascinates ecologists worldwide and the lively debate on this question is an attestation of the complexity of ecological systems. The ecological literature reveals two main perspectives for predicting biomass pyramids; one perspective emphasizes the role of resources such as inorganic nitrogen (N) and phosphorus (P) or primary producers in determining the biomass of higher trophic levels, and the other perspective emphasizes the role of consumers such as herbivores and predators in determining the biomass of lower trophic levels (Oksanen and Oksanen, 2000; Gruner et al., 2008).

The resource-based hypothesis states that organisms are resource-limited, and therefore resources determine the shape of biomass pyramids (Elton, 1927; Lindeman, 1942; White, 1978; McQueen et al., 1986). Consistent with Elton's (1927) perspective, Lindeman (1942) and others (e.g., White, 1978; McQueen et al., 1986) argued that inorganic nutrients and solar radiation limit plant growth and subsequently the potential transfer of energy and nutrients from lower trophic levels to higher trophic levels in ecosystems. This bottom-up perspective has been expanded to consider the role of plant defense in limiting herbivory (Strong, 1992; Polis and Strong, 1996; also, see Chapter 8 and Chapter 13).

In contrast, the consumer-based hypothesis (i.e., Hairston Smith Slobodkin (HSS) Hypothesis) states that organisms are consumer-regulated, and therefore higher-level consumers determine biomass pyramids (Hairston et al., 1960). Oksanen et al. (1981) further developed the consumer-regulated framework by developing the exploitation ecosystem hypothesis (EEH), which suggests that top-down control of ecosystems will vary along environmental gradients. Top-down perspectives gained additional support through Carpenter et al.'s (1985) empirical evidence of trophic cascades, whereby top predators have indirect positive effects on non-adjacent trophic levels.

Type
Chapter
Information
Trophic Ecology
Bottom-up and Top-down Interactions across Aquatic and Terrestrial Systems
, pp. 3 - 28
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, F., Merlet, J., Morellet, N., et al. (2012). Roe deer may markedly alter forest nitrogen and phosphorous budgets across Europe. Oikos, 121, 1271–1278.CrossRefGoogle Scholar
Anderson, W. B., Wait, D. A. and Stapp, P. (2008). Resources from another place and time: responses to pulses in a spatially subsidized system. Ecology, 89, 660–670.CrossRefGoogle Scholar
Arditi, R. and Ginzburg, L. R. (1989). Coupling in predator prey dynamics – ratio-dependence. Journal of Theoretical Biology, 139, 311–326.CrossRefGoogle Scholar
Baxter, C. V., Fausch, K. D. and Saunders, W. C. (2005). Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology, 50, 201–220.CrossRefGoogle Scholar
Borer, E. T., Halpern, B. S. and Seabloom, E. W. (2006). Asymmetry in community regulation: effects of predators and productivity. Ecology, 87, 2813–2820.CrossRefGoogle ScholarPubMed
Borer, E. T., Seabloom, E. W., Shurin, J. B., et al. (2005). What determines the strength of a trophic cascade?Ecology, 86, 528–537.CrossRefGoogle Scholar
Brett, M. T. and Goldman, C. R. (1996). A meta-analysis of the freshwater trophic cascade. Proceedings of the National Academy of Sciences of the USA, 93, 7723–7726.CrossRefGoogle ScholarPubMed
Cadotte, M. W. (2006). Dispersal and species diversity: a meta-analysis. American Naturalist, 167, 913–924.Google ScholarPubMed
Carpenter, S. R. and Kitchell, J. F. (1993). The Trophic Cascade in Lake Ecosystems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Carpenter, S. R., Kitchell, J. F. and Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. Bioscience, 35, 634–639.CrossRefGoogle Scholar
Cebrian, J. (1999). Patterns in the fate of production in plant communities. American Naturalist, 154, 449–468.CrossRefGoogle ScholarPubMed
Cebrian, J., Shurin, J. B., Borer, E. T., et al. (2009). Producer nutritional quality controls ecosystem trophic structure. PLoS One, 4, e4929.CrossRefGoogle ScholarPubMed
Cherif, M. and Loreau, M. (2013). Plant-herbivore-decomposer stoichiometric mismatches and nutrient cycling in ecosystems. Proceedings of the Royal Society B: Biological Sciences, 280, 2012–2453.CrossRefGoogle ScholarPubMed
Creel, S., Christianson, D., Liley, S. and Winnie Jr., J. A. (2007). Predation risk affects reproductive physiology and demography of elk. Science, 315, 960.CrossRefGoogle ScholarPubMed
Daskalov, G. M., Grishin, A. N., Rodionov, S. and Mihneva, V. (2007). Trophic casades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proceedings of the National Academy of Sciences of the USA, 104, 10518–10523.CrossRefGoogle Scholar
de Mazancourt, C., Loreau, M. and Abbadie, L. (1998). Grazing optimization and nutrient cycling: when do herbivores enhance plant production?Ecology, 79, 2242–2252.CrossRefGoogle Scholar
DeAngelis, D. L. (1992). Dynamics of Nutrient Cycling and Food Webs. New York: Chapman and Hall.CrossRefGoogle Scholar
Denno, R. F., Lewis, D. and Gratton, C. (2005). Spatial variation in the relative strength of top-down and bottom-up forces: causes and consequences for phytophagous and insect populations. Annales Zoologici Fennici, 42, 295–311.Google Scholar
Duffy, J. E., Carinale, B. J., France, K. E., et al. (2007). The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters, 10, 522–538.CrossRefGoogle ScholarPubMed
Elser, J. J., Bracken, M. E. S., Cleland, E. E., et al. (2007). Global analysis of nitrogen and phosphorous limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135–1142.CrossRefGoogle ScholarPubMed
Elton, C. S. (1927). Animal Ecology. New York: Macmillan Co.Google Scholar
Fath, B. D. (2004). Distributed control in ecological networks. Ecological Modelling, 179, 235–245.CrossRefGoogle Scholar
Field, R. D. and Reynolds, J. D. (2011). Sea to sky: impacts of residual salmon-derived nutrients on estuarine breeding bird communities. Proceedings of the Royal Society B: Biological Sciences, 278, 3081–3088.CrossRefGoogle Scholar
Findlay, D. L., Vanni, M. J., Paterson, M., et al. (2005). Dynamics of a boreal lake ecosystem during a long-term manipulation of top predators. Ecosystems, 8, 603–618.CrossRefGoogle Scholar
Flecker, A. S., McIntyre, P. B., Moore, J. W., et al. (2010). Miigratory fishes as material and process subsidies in riverine ecosystems. American Fisheries Society Symposium, 73, 559–592.Google Scholar
Frank, K. T., Petrie, B. and Shackell, N. L. (2007). The ups and downs of trophic control in continental shelf ecosystems. Trends in Ecology and Evolution, 22, 236–242.CrossRefGoogle ScholarPubMed
Fretwell, S. D. (1977). The regulation of plant communities by food chains exploiting them. Perspectives in Biology and Medicine, 20, 169–185.CrossRefGoogle Scholar
Glaholt, S. P. and Vanni, M. J. (2005). Ecological responses to simulated benthic-derived nutrient subsidies mediated by omnivorous fish. Freshwater Biology, 50, 1864–1881.CrossRefGoogle Scholar
Gratton, C. and Denno, R. F. (2003a). Inter-year carryover effects of a nutrient pulse on Spartina plants, herbivores, and natural enemies. Ecology, 84, 2692–2707.CrossRefGoogle Scholar
Gratton, C. and Denno, R. F. (2003b). Seasonal shift from bottom-up to top-down impact in phytophagous insect populations. Oecologia, 134, 487–495.CrossRefGoogle ScholarPubMed
Gravel, D., Guichard, F., Loreau, M. and Mouquet, N. (2010). Source and sink dynamics in meta-ecosystems. Ecology, 91, 2172–2184.CrossRefGoogle ScholarPubMed
Gripenberg, S. and Roslin, T. (2007). Up or down in space? Uniting the bottom-up versus top-down paradigm and spatial ecology. Oikos, 116, 181–188.CrossRefGoogle Scholar
Grover, J. P. (2003). The impact of variable stoichiometry on predator-prey interactions: a multinutrient approach. American Naturalist, 162, 29–43.CrossRefGoogle ScholarPubMed
Gruner, D. S., Smith, J. E., Seabloom, E. W., et al. (2008). A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecology Letters, 11, 740–755.CrossRefGoogle ScholarPubMed
Hairston, N. G., Smith, F. E. and Slobodkin, L. B. (1960). Community structure, population control, and competition. American Naturalist, 94, 421–425.CrossRefGoogle Scholar
Hall, S. R., Shurin, J. B., Diehl, S. and Nisbet, R. M. (2007). Food quality, nutrient limitation of secondary production, and the strength of trophic cascades. Oikos, 116, 1128–1143.CrossRefGoogle Scholar
Hassell, M. P., Crawley, M. J., Godfray, H. C. J. and Lawton, J. H. (1998). Top-down versus bottom-up and the Ruritanian bean bug. Proceedings of the National Academy of Sciences of the USA, 95, 10661–10664.CrossRefGoogle ScholarPubMed
Hastings, A. (2004). Transients: the key to long-term ecological understanding?Trends in Ecology and Evolution, 19, 39–45.CrossRefGoogle ScholarPubMed
Hastings, A. (2010). Timescales, dynamics, and ecological understanding. Ecology, 91, 3471–3480.CrossRefGoogle ScholarPubMed
Hastings, A. (2012). Temporally varying resources amplify the importance of resource input in ecological populations. Biology Letters, 8, 1067–1069.CrossRefGoogle ScholarPubMed
Hawlena, D. and Schmitz, O. J. (2010). Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proceedings of the National Academy of Sciences of the USA, 107, 15503–15507.CrossRefGoogle ScholarPubMed
Helfield, J. M. and Naiman, R. J. (2006). Keystone interactions: salmon and bear in riparian forests of Alaska. Ecosystems, 9, 167–180.CrossRefGoogle Scholar
Hillebrand, H. and Cardinale, B. J. (2004). Consumer effects decline with prey diversity. Ecology Letters, 7, 192–201.CrossRefGoogle Scholar
Hocking, M. D. and Reynolds, J. D. (2011). Impacts of salmon on riparian plant diversity. Science, 331, 1609–1612.CrossRefGoogle ScholarPubMed
Holt, R. D. (1977). Predation, apparent competition, and the structure of prey communities. Theoretical Population Biology, 12, 197–229.CrossRefGoogle ScholarPubMed
Holt, R. D. (2008). Theoretical perspectives on resource pulses. Ecology, 89, 671–681.CrossRefGoogle ScholarPubMed
Holtgrieve, G. W., Schindler, D. E. and Jewett, P. K. (2009). Large predators and biogeochemical hotspots: brown bear (Ursus arctos) predation on salmon alters nitrogen cycling in riparian soils. Ecological Research, 24, 1125–1135.CrossRefGoogle Scholar
Hulot, F. D. and Loreau, M. (2006). Nutrient-limited food webs with up to three trophic levels: feasibility, stability, assembly rules, and effects of nutrient enrichment. Theoretical Population Biology, 69, 48–66.CrossRefGoogle ScholarPubMed
Hunter, M. D. and Price, P. W. (1992). Playing chutes and ladders – heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology, 73, 724–732.Google Scholar
Huxel, G. R. and McCann, K. (1998). Food web stability: the influence of trophic flows across habitats. American Naturalist, 152, 460–469.CrossRefGoogle ScholarPubMed
Jones, C. G., Lawton, J. H. and Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.CrossRefGoogle Scholar
Kerimoglu, O., Straile, D. and Peeters, F. (2013). Seasonal, inter-annual and long-term variation in top-down versus bottom-up regulation of primary production. Oikos, 122, 223–234.CrossRefGoogle Scholar
Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A. and Holt, R. D. (2005). Trophic cascades across systems. Nature, 437, 880–883.CrossRefGoogle Scholar
LeBauer, D. S. and Treseder, K. K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371–379.CrossRefGoogle ScholarPubMed
Leroux, S. J. and Loreau, M. (2008). Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecology Letters, 11, 1147–1156.CrossRefGoogle ScholarPubMed
Leroux, S. J. and Loreau, M. (2009). Disentangling multiple predator effects in biodiversity and ecosystem functioning research. Journal of Animal Ecology, 78, 695–698.CrossRefGoogle ScholarPubMed
Leroux, S. J. and Loreau, M. (2010). Consumer-mediated recycling and cascading trophic interactions. Ecology, 91, 2162–2171.CrossRefGoogle ScholarPubMed
Leroux, S. J. and Loreau, M. (2012). Dynamics of reciprocal pulsed subsidies in local and meta-ecosystems. Ecosystems, 15, 48–59.CrossRefGoogle Scholar
Leroux, S. J., Hawlena, D. and Schmitz, O. J. (2012). Predation risk, stoichiometric plasticity and ecosystem elemental cycling. Proceedings of the Royal Society B: Biological Sciences, 279, 4183–4191.CrossRefGoogle ScholarPubMed
Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399–418.CrossRefGoogle Scholar
Litzow, M. A. and Ciannelli, L. (2007). Oscillating trophic control induces community reorganization in a marine ecosystem. Ecology Letters, 10, 1124–1134.CrossRefGoogle Scholar
Loreau, M. (1995). Consumers as maximizers of matter and energy-flow in ecosystems. American Naturalist, 145, 22–42.CrossRefGoogle Scholar
Loreau, M. (2010). From Populations to Ecosystems: Theoretical Foundations for a New Ecological Synthesis. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Loreau, M. and Holt, R. D. (2004). Spatial flows and the regulation of ecosystems. The American Naturalist, 163, 606–615.CrossRefGoogle ScholarPubMed
Loreau, M., Daufresne, T., Gonzalez, A., et al. (2013). Unifying sources and sinks in ecology and Earth sciences. Biological Reviews, 88, 365–379.CrossRefGoogle ScholarPubMed
Loreau, M., Mouquet, N. and Holt, R. D. (2003). Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecology Letters, 6, 673–679.CrossRefGoogle Scholar
Marczak, L. B., Thompson, R. M. and Richardson, J. S. (2007). Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology, 88, 140–148.CrossRefGoogle ScholarPubMed
Marleau, J. N., Guichard, F., Mallard, F. and Loreau, M. (2010). Nutrient flows between ecosystems can destabilize simple food chains. Journal of Theoretical Biology, 266, 162–174.CrossRefGoogle ScholarPubMed
Massol, F., Gravel, D., Mouquet, N., et al. (2011). Linking community and ecosystem dynamics through spatial ecology. Ecology Letters, 14, 313–323.CrossRefGoogle ScholarPubMed
McCann, K. S. and Rooney, N. (2009). The more food webs change, the more they stay the same. Philosophical Transactions of the Royal Society of London B, 364, 1789–1801.CrossRefGoogle ScholarPubMed
McCann, K. S., Rasmussen, J. B. and Umbanhowar, J. (2005). The dynamics of spatially coupled food webs. Ecology Letters, 8, 513–523.CrossRefGoogle ScholarPubMed
McCoy, M. W., Barfield, M. and Holt, R. D. (2009). Predator shadows: complex life histories as generators of spatially patterned indirect interactions across ecosystems. Oikos, 118, 87–100.CrossRefGoogle Scholar
McIntyre, P. B., Flecker, A. S., Vanni, M. J., et al. (2008). Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots?Ecology, 89, 2335–2346.CrossRefGoogle ScholarPubMed
McQueen, D. J., Post, J. R. and Mills, E. L. (1986). Trophic relationships in fresh-water pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 43, 1571–1581.CrossRefGoogle Scholar
Menge, B. A. and Sutherland, J. P. (1976). Species-diversity gradients – synthesis of roles of predation, competition, and temporal heterogeneity. American Naturalist, 110, 351–369.CrossRefGoogle Scholar
Moore, J. C., Berlow, E. L., Coleman, D. C., et al. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters, 7, 584–600.CrossRefGoogle Scholar
Moore, J. W., Schindler, D. E., Carter, J. L., et al. (2007). Biotic control of stream fluxes: Spawning salmon drive nutrient and matter export. Ecology, 88, 1278–1291.CrossRefGoogle ScholarPubMed
Murakami, M. and Nakano, S. (2002). Indirect effects of aquatic insect emergence on a terrestrial insect population through predation by birds. Ecology Letters, 5, 333–337.CrossRefGoogle Scholar
Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. and Peterson, C. H. (2007). Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science, 315, 1846–1850.CrossRefGoogle ScholarPubMed
Nakano, S., Miyasaka, H. and Kuhara, N. (1999). Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology, 80, 2435–2441.Google Scholar
Neubert, M. G. and Caswell, H. (1997). Alternatives to resilience for measuring the responses of ecological systems to perturbations. Ecology, 78, 653–665.CrossRefGoogle Scholar
Neubert, M. G., Caswell, H. and Solow, A. R. (2009). Detecting reactivity. Ecology, 90, 2683–2688.CrossRefGoogle ScholarPubMed
Northcote, T. G. (1988). Fish in the structure and function of freshwater ecosystems: a “top-down” view. Canadian Journal of Fisheries and Aquatic Sciences, 45, 361–379.CrossRefGoogle Scholar
Oksanen, L., Fretwell, S. D., Arruda, J. and Niemela, P. (1981). Exploitation ecosystems in gradients of primary productivity. American Naturalist, 118, 240–261.CrossRefGoogle Scholar
Oksanen, L. and Oksanen, T. (2000). The logic and realism of the hypothesis of exploitation ecosystems. American Naturalist, 155, 703–723.CrossRefGoogle ScholarPubMed
Pace, M. L., Cole, J. J., Carpenter, S. R. and Kitchell, J. F. (1999). Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution, 14, 483–488.CrossRefGoogle ScholarPubMed
Persson, L. (1999). Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos, 85, 385–397.CrossRefGoogle Scholar
Polis, G. A. (1999). Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos, 86, 3–15.CrossRefGoogle Scholar
Polis, G. A., Anderson, W. B. and Holt, R. D. (1997). Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics, 28, 289–316.CrossRefGoogle Scholar
Polis, G. A. and Hurd, S. D. (1995). Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proceedings of the National Academy of Sciences of the USA, 92, 4382–4386.CrossRefGoogle ScholarPubMed
Polis, G. A. and Strong, D. R. (1996). Food web complexity and community dynamics. American Naturalist, 147, 813–846.CrossRefGoogle Scholar
Polishchuk, L. V., Vijverberg, J., Voronov, D. A. and Mooij, W. M. (2013). How to measure top-down vs bottom-up effects: a new population metric and its calibration on Daphnia. Oikos, 122, 1177–1186.CrossRefGoogle Scholar
Rip, J. M. K. and McCann, K. S. (2011). Cross-ecosystem differences in stability and the principle of energy flux. Ecology Letters, 14, 733–740.CrossRefGoogle ScholarPubMed
Ripple, W. J. and Beschta, R. L. (2005). Linking wolves and plants: Aldo Leopold on trophic cascades. Bioscience, 55, 613–621.CrossRefGoogle Scholar
Rooney, N., McCann, K., Gellner, G. and Moore, J. C. (2006). Structural asymmetry and the stability of diverse food webs. Nature, 442, 265–269.CrossRefGoogle ScholarPubMed
Rose, M. D. and Polis, G. A. (1998). The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea. Ecology, 79, 998–1007.CrossRefGoogle Scholar
Rosemond, A. D., Mulholland, P. J. and Elwood, J. W. (1993). Top-down and bottom-up control of stream periphyton: effects of nutrients and herbivores. Ecology, 74, 1264–1280.CrossRefGoogle Scholar
Rosenzweig, M. l. (1971). Paradox of enrichment – destabilization of exploitation ecosystems in ecological time. Science, 171, 385–387.CrossRefGoogle ScholarPubMed
Schindler, D. E. and Scheuerell, M. D. (2002). Habitat coupling in lake ecosystems. Oikos, 98, 177–189.CrossRefGoogle Scholar
Schmitz, O. J. (2010). Resolving Ecosystem Complexity. Princeton, NJ: Princeton University Press.Google Scholar
Schmitz, O. J., Hamback, P. A. and Beckerman, A. P. (2000). Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. American Naturalist, 155, 141–153.CrossRefGoogle ScholarPubMed
Schmitz, O. J., Hawlena, D. and Trussell, G. C. (2010). Predator control of ecosystem nutrient dynamics. Ecology Letters, 13, 1199–1209.CrossRefGoogle ScholarPubMed
Schmitz, O. J., Krivan, V. and Ovadia, O. (2004). Trophic cascades: the primacy of trait-mediated indirect interactions. Ecology Letters, 7, 153–163.CrossRefGoogle Scholar
Schreiber, S. and Rudolf, V. H. W. (2008). Crossing habitat boundaries: coupling dynamics of ecosystems through complex life cycles. Ecology Letters, 11, 576–587.CrossRefGoogle ScholarPubMed
Shurin, J. B., Borer, E. T., Seabloom, E. W., et al. (2002). A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters, 5, 785–791.CrossRefGoogle Scholar
Shurin, J. B., Gruner, D. S. and Hillebrand, H. (2006). All wet or dried up? Real differences between aquatic and terrestrial food webs. Proceedings of the Royal Society B: Biological Sciences, 273, 1–9.CrossRefGoogle ScholarPubMed
Shurin, J. B. and Seabloom, E. W. (2005). The strength of trophic cascades across ecosystems: predictions from allometry and energetics. Journal of Animal Ecology, 74, 1029–1038.CrossRefGoogle Scholar
Sterner, R. W. and Elser, J. J. (2002). Ecological Stoichiometry: The Biology of Elements From Molecules to the Biosphere. Princeton, NJ: Princeton University Press.Google Scholar
Stibor, H., Vadstein, O., Diehl, S., et al. (2004). Copepods act as a switch between alternative trophic cascades in marine pelagic food webs. Ecology Letters, 7, 321–328.CrossRefGoogle Scholar
Strong, D. R. (1992). Are trophic cascades all wet – differentiation and donor-control in speciose ecosystems. Ecology, 73, 747–754.CrossRefGoogle Scholar
Takimoto, G., Iwata, T. and Murakami, M. (2002). Seasonal subsidy stabilizes food web dynamics: balance in a heterogeneous landscape. Ecological Research, 17, 433–439.CrossRefGoogle Scholar
Takimoto, G., Iwata, T. and Murakami, M. (2009). Timescale hierarchy determines the indirect effects of fluctuating subsidy inputs on in situ resources. American Naturalist, 173, 200–211.CrossRefGoogle ScholarPubMed
Vander Zanden, M. J. and Vadeboncoeur, Y. (2002). Fishes as integrators of benthic and pelagic food webs in lakes. Ecology, 83, 2152–2161.CrossRefGoogle Scholar
Vanni, M. J. (2002). Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics, 33, 341–370.CrossRefGoogle Scholar
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. and Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.CrossRefGoogle Scholar
Verspoor, J. J., Braun, D. C. and Reynolds, J. D. (2010). Quantitative links between Pacific salmon and stream periphyton. Ecosystems, 13, 1020–1034.CrossRefGoogle Scholar
Whalen, M. A., Duffy, J. E. and Grace, J. B. (2013). Temporal shifts in top-down vs bottom-up control of epiphytic algae in a seagrass ecosystem. Ecology, 94, 510–520.CrossRefGoogle Scholar
White, T. C. R. (1978). Importance of a relative shortage of food in animal ecology. Oecologia, 33, 71–86.CrossRefGoogle ScholarPubMed
Wollrab, S., Diehl, S. and De Roos, A. M. (2012). Simple rules describe bottom-up and top-down control in food webs with alternative energy pathways. Ecology Letters, 15, 935–946.CrossRefGoogle ScholarPubMed
Yang, L. H. (2004). Periodical cicadas as resource pulses in North American forests. Science, 306, 1565–1567.CrossRefGoogle ScholarPubMed
Yang, L. H., Edwards, K., Byrnes, J. E., et al. (2010). A meta-analysis of resource pulse-consumer interactions. Ecological Monographs, 80, 125–151.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×