Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T00:39:41.066Z Has data issue: false hasContentIssue false

Chapter Four - The impact of trait-mediated indirect interactions in marine communities

Published online by Cambridge University Press:  05 February 2013

Jeremy D. Long
Affiliation:
Department of Biology and Coastal Marine Institute Laboratory, San Diego State University
Mark E. Hay
Affiliation:
School of Biology, Georgia Institute of Technology
Takayuki Ohgushi
Affiliation:
Kyoto University, Japan
Oswald Schmitz
Affiliation:
Yale University, Connecticut
Robert D. Holt
Affiliation:
University of Florida
Get access

Summary

Introduction

Marine communities have served as productive laboratories for the discovery of fundamental processes and mechanisms driving community structure and function (e.g., Paine 1966; Connell 1961; Dayton 1975). Within these communities, inducible responses are ubiquitous; extending from the seafloor to the sea-surface, and from microscopic plankton to charismatic marine megafauna (e.g., Harvell 1990; Toth and Pavia 2007; Hay 2009; Vaughn and Allen 2010). These changes may influence energy and nutrient cycling within and among ecosystems (Hay and Kubanek 2002; Long et al. 2007b). Over the past decade, marine ecologists have begun to demonstrate the often dramatic, cascading consequences of these trait modifications on co-occurring species and thus community structure and function. These trait-mediated indirect interactions (TMIIs) influence trophic cascades (Trussell et al. 2002; Grabowski and Kimbro 2005), competition between herbivores (Denno et al. 2000; Long et al. 2007a, 2011), apparent competition (Schmitt 1987), herbivore population dynamics (Denno et al. 2000), linkage across ecosystems (Nevitt et al. 1995) and energy flow and food chain length (Trussell et al. 2006b). In this chapter we discuss how TMIIs affect marine populations, communities and sometimes ecosystems, and consider the insights that can be gained from understanding and contrasting marine patterns and processes with those occurring in terrestrial or freshwater systems.

Before the role of TMIIs was broadly recognized in marine systems, marine ecologists recognized and documented the importance of indirect interactions in structuring communities such as rocky shores (Paine 1966; Lubchenco 1978; Menge 1978) and kelp forests (Estes et al. 1998). Recent evidence highlights that many of these indirect interactions may be trait-mediated. In a recent field manipulation, predation risk alone was enough to drive the cascade from predatory crabs, through grazing snails, to seaweeds on New England rocky shores (Trussell et al. 2004). It appears that considerable portions of the total indirect effects seen in previous marine experiments may be trait-mediated, rather than density-mediated (density-mediated indirect interactions, DMII). This hypothesis seems possible because most studies of marine trophic cascades either (1) assumed that changes in the abundance of intermediate consumers (e.g., snails) were the result of predators eating prey or (2) restricted herbivore movements and predator avoidance strategies in ways that prevented expression of some important TMIIs. Thus, some influential field studies could have confounded density-mediated effects with trait-mediated effects.

Type
Chapter
Information
Trait-Mediated Indirect Interactions
Ecological and Evolutionary Perspectives
, pp. 47 - 68
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aschaffenburg, M. D. 2008 Different crab species influence feeding of the snail through trait-mediated indirect interactionsMarine Ecology: An Evolutionary Perspective 29 348CrossRefGoogle Scholar
Bergkvist, J.Selander, E.Pavia, H. 2008 Induction of toxin production in dinoflagellates: the grazer makes a differenceOecologia 156 147CrossRefGoogle ScholarPubMed
Bishop, M.Wear, S. 2005 Ecological consequences of ontogenetic shifts in predator diet: seasonal constraint of a behaviorally mediated indirect interactionJournal of Experimental Marine Biology and Ecology 326 199CrossRefGoogle Scholar
Bollens, S. M.Frost, B. W. 1989 Predator-induced diel vertical migration in a planktonic copepodJournal of Plankton Research 11 1047CrossRefGoogle Scholar
Bolser, R. C.Hay, M. E. 1998 A field test of inducible resistance to specialist and generalist herbivores using the water lily Oecologia 116 143CrossRefGoogle ScholarPubMed
Coleman, R. A.Ramchunder, S. J.Davies, K. M.Moody, A. J.Foggo, A. 2007 Herbivore-induced infochemicals influence foraging behaviour in two intertidal predatorsOecologia 151 454CrossRefGoogle ScholarPubMed
Connell, 1961 Influence of interspecific competition and other factors on distribution of barnacle Ecology 42 710CrossRefGoogle Scholar
Dacey, J. W. H.Wakeham, S. G. 1986 Oceanic dimethylsulfide: production during zooplankton grazing on phytoplanktonScience 233 1314CrossRefGoogle ScholarPubMed
Dawkins, R.Krebs, J. R. 1979 Arms races between and within speciesProceedings of the Royal Society of London Series B 205 489CrossRefGoogle ScholarPubMed
Dayton, P. K. 1975 Experimental evaluations of ecological dominance in a rocky intertidal communityEcological Monographs 45 137CrossRefGoogle Scholar
Dayton, P. K. 1985 The structure and regulation of some South American kelp communitiesEcological Monographs 55 447CrossRefGoogle Scholar
Denno, R. F.Kaplan, I. 2007 Plant-mediated interactions in herbivorous insects: mechanisms, symmetry, and challenging the paradigms of competition pastOhgushi, T.Craig, T. P.Price, P. W.Ecological Communities: Plant Mediation in Indirect Interaction WebsCambridgeCambridge University Press19CrossRefGoogle Scholar
Denno, R. F.Roderick, G. K. 1992 Density-related dispersal in planthoppers: effects of interspecific crowdingEcology 73 1323CrossRefGoogle Scholar
Denno, R. F.Peterson, M. A.Gratton, C. 2000 Feeding-induced changes in plant quality mediate interspecific competition between sap-feeding herbivoresEcology 81 1814CrossRefGoogle Scholar
Dicke, M. 1999 The evolution of induced indirect defense of plantsTollrian, R.Harvell, C. D.The Ecology and Evolution of Inducible DefensesPrinceton, NJPrinceton University Press62Google Scholar
Dill, L. M.Heithaus, M. R.Walters, C. J. 2003 Behaviorally mediated indirect interactions in marine communities and their conservation implicationsEcology 84 1151CrossRefGoogle Scholar
Dixson, D. L.Munday, P. L.Jones, G. P. 2010 Ocean acidification disrupts the innate ability of fish to detect predator olfactory cuesEcology Letters 13 68CrossRefGoogle Scholar
Edgell, T. C.Neufeld, C. J. 2008 Experimental evidence for latent developmental plasticity: intertidal whelks respond to a native but not an introduced predatorBiology Letters 4 385CrossRefGoogle ScholarPubMed
Estes, J. A.Tinker, M. T.Williams, T. M.Doak, D. F. 1998 Killer whale predation on sea otters linking oceanic and nearshore ecosystemsScience 282 473CrossRefGoogle ScholarPubMed
Ferner, M. C.Smee, D. L.Weissburg, M. J. 2009 Habitat complexity alters lethal and non-lethal olfactory interactions between predators and preyMarine Ecology: Progress Series 374 13CrossRefGoogle Scholar
Freeman, A. S. 2005 Size-dependent trait-mediated indirect interactions among sea urchin herbivoresBehavioral Ecology 17 182CrossRefGoogle Scholar
Frid, A.Baker, G. G.Dill, M. L. 2008 Do shark declines create fear-released systemsOikos 117 191CrossRefGoogle Scholar
Grabowski, J. H.Kimbro, D. L. 2005 Predator-avoidance behavior extends trophic cascades to refuge habitatsEcology 86 1312CrossRefGoogle Scholar
Griffin, C. A. M.Thaler, J. S. 2006 Insect predators affect plant resistance via density- and trait-mediated indirect interactionsEcology Letters 9 338CrossRefGoogle ScholarPubMed
Griffiths, C. L.Richardson, C. A. 2006 Chemically induced predator avoidance behaviour in the burrowing bivalve Journal of Experimental Marine Biology and Ecology 331 91CrossRefGoogle Scholar
Harvell, C. D. 1990 The ecology and evolution of inducible defensesQuarterly Review of Biology 65 323CrossRefGoogle ScholarPubMed
Hay, M. E. 1986 Associational plant defenses and the maintenance of species diversity: turning competitors into accomplicesAmerican Naturalist 128 617CrossRefGoogle Scholar
Hay, M. E. 1992 The role of seaweed chemical defenses in the evolution of feeding specialization and in the mediation of complex interactionsPaul, V. J.Ecological Roles for Marine Natural ProductsIthaca, NYComstock Press93Google Scholar
Hay, M. E. 2009 Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystemsAnnual Review of Marine Sciences 1 193CrossRefGoogle ScholarPubMed
Hay, M. E.Kubanek, J. 2002 Community and ecosystem level consequences of chemical cues in the planktonJournal of Chemical Ecology 28 2001CrossRefGoogle ScholarPubMed
Hays, G. C. 2003 A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrationsHydrobiologia 503 163CrossRefGoogle Scholar
Heithaus, M. R.Dill, L. M. 2002 Food availability and tiger shark predation risk influence bottlenose dolphin habitat useEcology 83 480CrossRefGoogle Scholar
Heithaus, M. R.Frid, A.Wirsing, A. J. 2007 State-dependent risk-taking by green sea turtles mediates top-down effects of tiger shark intimidation in a marine ecosystemJournal of Animal Ecology 76 837CrossRefGoogle Scholar
Heithaus, M. R.Wirsing, A. J.Burkholder, D.Thomson, J.Dill, L. M. 2009 Towards a predictive framework for predator risk effects: the interaction of landscape features and prey escape tacticsJournal of Animal Ecology 78 556CrossRefGoogle ScholarPubMed
Kimbro, D. L.Grosholz, E. D.Baukus, A. J. 2009 Invasive species cause large-scale loss of native California oyster habitat by disrupting trophic cascadesOecologia 160 563CrossRefGoogle ScholarPubMed
Leonard, G. H.Bertness, M. D.Yund, P. O. 1999 Crab predation, waterborne cues, and inducible defenses in the blue mussel, Ecology 80 1CrossRefGoogle Scholar
Lima, S. L.Dill, L. M. 1990 Behavioral decisions made under the risk of predation: a review and prospectusCanadian Journal of Zoology/Revue Canadienne De Zoologie 68 619CrossRefGoogle Scholar
Lively, C. M. 1986 Predator-induced shell dimorphism in the acorn barnacle Evolution 40 232CrossRefGoogle ScholarPubMed
Long, J. D.Hamilton, R. S.Mitchell, J. L. 2007 Asymmetric competition via induced resistance: specialist herbivores indirectly suppress generalist preference and populationsEcology 88 1232CrossRefGoogle ScholarPubMed
Long, J. D.Mitchell, J. L.Sotka, E. E. 2011 Local consumers induce resistance differentially between populations in the fieldEcology 92 180CrossRefGoogle ScholarPubMed
Long, J. D.Smalley, G. W.Barsby, T. A.Anderson, J. T.Hay, M. E. 2007 Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplanktonProceedings of the National Academy of Sciences of the United States of America 104 10512CrossRefGoogle Scholar
Loose, C. J.Dawidowicz, P. 1994 Trade-offs in diel vertical migration by zooplankton: the costs of predator avoidanceEcology 75 2255CrossRefGoogle Scholar
Lubchenco, J. 1978 Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilitiesAmerican Naturalist 112 23CrossRefGoogle Scholar
Madin, E. M. P.Gaines, S. D.Madin, J. S.Warner, R. R. 2010 Fishing indirectly structures macroalgal assemblages by altering herbivore behaviorAmerican Naturalist 176 785CrossRefGoogle ScholarPubMed
Matassa, C. M. 2010 Purple sea urchins reduce grazing rates in response to risk cues from the spiny lobster Marine Ecology Progress Series 400 283CrossRefGoogle Scholar
Menge, B. A. 1978 Predation intensity in a rocky intertidal community: relation between predator foraging activity and environmental harshnessOecologia 34 1CrossRefGoogle Scholar
Miller, M. L. 1986 Avoidance and escape responses of the gastropod (Deshayes, 1839) to the predatory seastar (Brandt, 1835)Veliger 28 394Google Scholar
Mouritsen, K. N.Poulin, R. 2005 Parasites boost biodiversity and change animal community structure by trait-mediated indirect effectsOikos 108 344CrossRefGoogle Scholar
Munday, P. L.Dixson, D. L.McCormick, M. I. 2010 Replenishment of fish populations is threatened by ocean acidificationProceedings of the National Academy of Sciences of the United States of America 107 12930CrossRefGoogle ScholarPubMed
Myers, R. A.Baum, J. K.Shepherd, T. D.Powers, S. P.Peterson, C. H. 2007 Cascading effects of the loss of apex predatory sharks from a coastal oceanScience 315 1846CrossRefGoogle ScholarPubMed
Nevitt, G. A. 2008 Sensory ecology on the high seas: the odor world of procellariiform sea birdsJournal of Experimental Biology 211 1706CrossRefGoogle Scholar
Nevitt, G. A.Veit, R. R.Kareiva, P. 1995 Dimethyl sulphide as a foraging cue for Antarctic Procellariiform seabirdsNature 376 680CrossRefGoogle Scholar
Paine, R. T. 1966 Food web complexity and species diversityAmerican Naturalist 100 65CrossRefGoogle Scholar
Pauly, D.Christensen, V.Dalsgaard, J.Froese, R.Torres, F. 1998 Fishing down marine food websScience 279 860CrossRefGoogle ScholarPubMed
Peckarsky, B. L.Abrams, P. A.Bolnick, D. I. 2008 Revisiting the classics: considering nonconsumptive effects in textbook examples of predator–prey interactionsEcology 89 2416CrossRefGoogle ScholarPubMed
Pennings, S. C.Silliman, B. R. 2005 Linking biogeography and community ecology: latitudinal variation in plant–herbivore interaction strengthEcology 86 2310CrossRefGoogle Scholar
Phillips, D. W. 1975 Distance chemoreception-triggered avoidance-behavior of limpets (Collisella) and (Notoacmea) to predatory starfish Journal of Experimental Zoology 191 199CrossRefGoogle Scholar
Posey, M. H.Hines, A. H. 1991 Complex predator–prey interactions within an estuarine benthic communityEcology 72 2155CrossRefGoogle Scholar
Prugh, L. R.Stoner, C. J.Epps, C. W. 2009 The rise of the mesopredatorBioScience 59 779CrossRefGoogle Scholar
Raimondi, P. T.Forde, S. E.Delph, L. F.Lively, C. M. 2000 Processes structuring communities: evidence for trait-mediated indirect effects through induced polymorphismsOikos 91 353CrossRefGoogle Scholar
Reynolds, P. L.Sotka, E. E. 2011 Non-consumptive predator effects indirectly influence marine plant biomass and palatabilityJournal of Ecology 99 1272CrossRefGoogle Scholar
Schmitt, R. J. 1987 Indirect interactions between prey: apparent competition, predator aggregation, and habitat segregationEcology 68 1887CrossRefGoogle ScholarPubMed
Schmitz, O. J. 1998 Direct and indirect effects of predation and predation risk in old-field interaction websAmerican Naturalist 151 327Google ScholarPubMed
Schmitz, O. J.Beckerman, A.Brien, K. M. 1997 Behaviorally mediated trophic cascades: effects of predation risk on food web interactionsEcology 78 1388CrossRefGoogle Scholar
Schmitz, O. J.Krivan, V.Ovadia, O. 2004 Trophic cascades: the primacy of trait-mediated indirect interactionsEcology Letters 7 153CrossRefGoogle Scholar
Selander, E.Thor, P.Toth, G.Pavia, H. 2006 Copepods induce paralytic shellfish toxin production in marine dinoflagellatesProceedings of the Royal Society of London, Series B 273 1673CrossRefGoogle ScholarPubMed
Smee, D. L.Weissburg, M. J. 2006 Clamming up: environmental forces diminish perceptive ability of bivalve preyEcology 87 1587CrossRefGoogle ScholarPubMed
Stallings, C. D. 2008 Indirect effects of an exploited predator on recruitment of coral-reef fishesEcology 89 2090CrossRefGoogle ScholarPubMed
Taylor, R. B.Sotka, E.Hay, M. E. 2002 Tissue-specific induction of herbivore resistance: seaweed response to amphipod grazingOecologia 132 68CrossRefGoogle ScholarPubMed
Toth, G. B.Pavia, H. 2007 Induced herbivore resistance in seaweeds: a meta-analysisJournal of Ecology 95 425CrossRefGoogle Scholar
Trussell, G. C. 1996 Phenotypic plasticity in an intertidal snail: the role of a common crab predatorEvolution 50 448CrossRefGoogle Scholar
Trussell, G. C.Ewanchuk, P. J.Bertness, M. D. 2002 Field evidence of trait-mediated indirect interactions in a rocky intertidal food webEcology Letters 5 241CrossRefGoogle Scholar
Trussell, G. C.Ewanchuk, P. J.Bertness, M. D.Silliman, B. R. 2004 Trophic cascades in rocky shore tide pools: distinguishing lethal and nonlethal effectsOecologia 139 427CrossRefGoogle ScholarPubMed
Trussell, G. C.Ewanchuk, P. J.Matassa, C. M. 2006 Habitat effects on the relative importance of trait- and density-mediated indirect interactionsEcology Letters 9 1245CrossRefGoogle ScholarPubMed
Trussell, G. C.Ewanchuk, P. J.Matassa, C. M. 2006 The fear of being eaten reduces energy transfer in a simple food chainEcology 87 2979CrossRefGoogle Scholar
Trussell, G. C.Ewanchuk, P. J.Matassa, C. M. 2008 Resource identity modifies the influence of predation risk on ecosystem functionEcology 89 2798CrossRefGoogle ScholarPubMed
Vaughn, D.Allen, J. D. 2010 The peril of the planktonIntegrative and Comparative Biology 50 552CrossRefGoogle ScholarPubMed
Verity, P. G. 2008
Wares, J. P.Cunningham, C. W. 2001 Phylogeography and historical ecology of the North Atlantic intertidalEvolution 55 2455CrossRefGoogle ScholarPubMed
Werner, E. E.Peacor, S. D. 2003 A review of trait-mediated indirect interactions in ecological communitiesEcology 84 1083CrossRefGoogle Scholar
Wirsing, A. J.Heithaus, M. R.Dill, L. M. 2007 Fear factor: do dugongs () trade food for safety from tiger sharks ()Oecologia 153 1031CrossRefGoogle Scholar
Wirsing, A. J.Heithaus, M. R.Frid, A.Dill, L. M. 2008 Seascapes of fear: evaluating sublethal predator effects experienced and generated by marine mammalsMarine Mammal Science 24 1CrossRefGoogle Scholar
Wood, C. L.Byers, J. E.Cottingham, K. L. 2007 Parasites alter community structureProceedings of the National Academy of Sciences of the United States of America 104 9335CrossRefGoogle ScholarPubMed
Worm, B.Sandow, M.Oschlies, A.Lotze, H. K.Myers, R. A. 2005 Global patterns of predator diversity in the open oceansScience 309 1365CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×