Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T09:56:34.928Z Has data issue: false hasContentIssue false

1 - Treewidth and Hypertree Width

from Part 1 - Graphical Structure

Published online by Cambridge University Press:  05 February 2014

Georg Gottlob
Affiliation:
University of Oxford
Gianluigi Greco
Affiliation:
Università degli Studi della Calabria
Francesco Scarcello
Affiliation:
University of Calabria
Lucas Bordeaux
Affiliation:
Microsoft Research
Youssef Hamadi
Affiliation:
Microsoft Research
Pushmeet Kohli
Affiliation:
Microsoft Research
Get access

Summary

This chapter covers methods for identifying islands of tractability for NP-hard combinatorial problems by exploiting suitable properties of their graphical structure. Acyclic structures are considered, as well as nearly-acyclic ones identified by means of so-called structural decomposition methods. In particular, the chapter focuses on the tree decomposition method, which is the most powerful decomposition method for graphs, and on the hypertree decomposition method, which is its natural counterpart for hypergraphs. These problem-decomposition methods give rise to corresponding notions of width of an instance, namely, treewidth and hypertree width. It turns out that many NP-hard problems can be solved efficiently over classes of instances of bounded treewidth or hypertree width: deciding whether a solution exists, computing a solution, and even computing an optimal solution (if some cost function over solutions is specified) are all polynomial-time tasks. Example applications include problems from artificial intelligence, databases, game theory, and combinatorial auctions.

Many NP-hard problems in different areas such as AI [42], Database Systems [6, 81], Game theory [45, 31, 20], and Network Design [34], are known to be efficiently solvable when restricted to instances whose underlying structures can be modeled via acyclic graphs or acyclic hypergraphs. For such restricted classes of instances, solutions can usually be computed via dynamic programming. However, as a matter of fact, (graphical) structures arising from real applications are in most relevant cases not properly acyclic. Yet, they are often not very intricate and exhibit some rather limited degree of cyclicity, which suffices to retain most of the nice properties of acyclic instances.

Type
Chapter
Information
Tractability
Practical Approaches to Hard Problems
, pp. 3 - 38
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×