Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2012
  • Online publication date: July 2012

8 - Responses to pulmonary exposure to carbon nanotubes


1. S. Iijima. Helical microtubules of graphite carbon. Nature, 354 (1991), 56–58.
2. A. D. Maynard, P. A. Baron, M. Foley, et al. Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single walled carbon nanotube material. J. Toxicol. Environ. Health A, 67 (2004), 87–107.
3. J. H. Han, E. J. Lee, J. H. Lee, et al. Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal. Toxicol., 20 (2008), 741–749.
4. J. H. Lee, S.-B. Lee, G. N. Bae, et al. Exposure assessment of carbon nanotube manufacturing workplaces. Inhal. Toxicol., 22 (2010), 369–381.
5. D. R. Johnson, M. M. Methner, A. J. Kennedy, and J. A. Steevens. Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ. Health Perspect., 118 (2010), 49–54.
6. D. B. Warheit, B. R. Laurence, K. L. Reed, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci., 77 (2004), 117–125.
7. C. W. Lam, J. T. James, R. McCluskey, and R. L. Hunter. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci., 77 (2004), 125–134.
8. J. B. Mangum, E. A. Turpin, A. Antao-Menezes, et al. Single-walled carbon nanotube (SWCNT)-induced interstitial fibrosis in the lungs of rats is associated with increased levels of PDGF mRNA and the formation of unique intercellular carbon structures that bridge alveolar macrophages in situ. Part. Fibre Toxicol., 3 (2006), 15.
9. A. A. Shvedova, E. R. Kisin, R. Mercer, et al. Unusual inflammatory and fibrogenic pulmonary responses to single walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell Mol. Physiol., 289 (2005), L698–L708.
10. A. A. Shvedova, E. Kisin, A. R. Murray, et al. Inhalation versus aspiration of single walled carbon nanotubes in C57BL/6 mice: Inflammation, fibrosis, oxidative stress and mutagenesis. Am. J. Physiol. Lung Cell Mol. Physiol., 295 (2008a), L552–L565.
11. A. A. Shvedova, E. R. Kisin, A. R. Murray, et al. Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol. Appl. Pharmacol., 221 (2007), 339–348.
12. A. A. Shvedova, E. R. Kisin, A. R. Murray, et al. Increased accumulation of neutrophils and decreased fibrosis in the lungs of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol. Appl. Pharmacol., 231 (2008b), 235–240.
13. J. Muller, F. Huaus, N. Moreau, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol., 207 (2005), 221–231.
14. A. Liu, K. Sun, J. Yang, and D. Zhao. Toxicological effects of multi-wall carbon nanotubes in rats. Nanopart. Res., 10 (2008), 1303–1307.
15. L. Ma-Hock, S. Trenmann, V. Strauss, et al. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol. Sci., 112 (2009), 468–481.
16. N. Kobayaski, M. Naya, M. Ema, et al. Biological response an morphological assessment of individually dispersed multi-walled carbon nanotubes in the lung after intratracheal instillation in rats. Toxicol., 276 (2010), 143–153.
17. D. W. Porter, A. Hubbs, R. R. Mercer, et al. Mouse pulmonary dose- and time course-response induced by exposure to multi- walled carbon nanotubes. Toxicol., 269 (2010), 136–147.
18. S. Aiso, K. Yamazaki, Y. Umeda, et al. Pulmonary toxicity of intratracheally instilled multiwall carbon nanotubes in male Fischer 344 rats. Ind. Health, 48 (2010), 783–795.
19. E. Kuempel and V. Castranova. Hazard and risk assessment of workplace exposure to engineered nanoparticles: Methods, issues, and carbon nanotube case study. In G. Ramachandran, ed., Assessing Nanoparticle Risks to Human Health (New York: Elsevier, in press).
20. K. Stone, R. R. Mercer, P. Gehr, B. Stockstill, and J. D. Crapo. Allometric relationships of cell numbers and size in the mammalian lung. Am. J. Respir. Cell Mol. Biol., 6 (1992), 235–243.
21. NIOSH. Occupational Exposure to Carbon Nanotubes and Nanofibers. Current Intelligence Bulletin (Washington: National Institute for Occupational Safety and Health), 2010.
22. R. R. Mercer, J. F. Scabilloni, L. Wang, et al. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am. J. Physiol. Lung Cell Mol. Physiol., 294 (2008), L87–L97.
23. R. R. Mercer, A. F. Hubbs, J. F. Scabilloni, et al. Distribution and persistence of pleural penetrations by multi- walled carbon nanotubes. Part. Fibre Toxicol., 7 (2010), 28.
24. R. R. Mercer, A. F. Hubbs, J. F. Scabilloni, et al. Pulmonary fibrotic response to sub-chronic multi-walled carbon nanotube exposure. The Toxicologist, 120 (2011), A56.
25. J. P. Ryman-Rasmussen, M. F. Cesta, A. R. Brody, et al. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat. Nanotechnol., 4 (2009), 747–751.
26. L. Wang, V. Castranova, A. Mishra, et al. Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part. Fibre Toxicol., 7 (2010), 31.
27. A. Mishra, Y. Rojanasakul, V. Castranova, R. Mercer, and L. Wang. Assessment of fibrogenic biomarkers induced by multi wall carbon nanotubes. The Toxicologist, 120 (2011), A1183.
28. X. Wang, T. Xia, S. A. Ntim, et al. Quantitative techniques for assessing and controlling the dispersion and biological effects of multiwalled carbon nanotubes in mammalian tissue culture cells. ACS Nano (in press).
29. X. Li, H. Gao, M. Uo, et al. Maturation of osteoblast-like SaoS2 induced by carbon nanotubes. Biomed. Mater., 4 (2009), 015005; doi: 10.1088/1748–6041/4/1/015005.
30. E. M. Christenson, K. S. Anseth, J. J. J. P. von den Beucken, et al. Nanobiomaterial applications in orthopedics. J. Orthop. Res., 25 (2007), 11–22.
31. V. E. Kagan, Y. Y. Tyurina, V. A. Tyurina, et al. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol. Lett., 165 (2006), 88–100.
32. A. A. Shvedova, E. R. Kisin, A. R. Murray, et al. Exposure to carbon nanotube material: Assessment of the biological effects of nanotube materials using human keratinocytes. J. Toxicol. Environ. Health A, 66 (2003), 1901–1926.
33. S. G. Han, R. Andrews, and C. G. Gairola. Acute pulmonary response of mice to multi-walled carbon nanotubes. Inhal. Toxicol., 22 (2010), 340–347.
34. T. Sager, M. Wolfarth, D. Porter, et al. Effects of surface modification on the bioavailability and inflammatory potential of multi-walled carbon nanotubes. The Toxicologist, 120 (2010), A1178.
35. J. Pauluhn. Subchronic 13-week inhalation exposure to multiwalled carbon nanotubes: Toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol. Sci., 113 (2010), 226–242.
36. J. Pauluhn. Poorly soluble particulates searching for a unifying denominator of nanoparticles and fine particles for DNEL estimation. Toxicol., 270 (2011), 176–188.
37. J.-G. Li, W.-Y. Li, J.-Y. Xu, et al. Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ. Toxicol., 22 (2007), 415–421.
38. M. G. Wolfarth, W. McKinney, B. T. Chen, V. Castranova, and D. W. Porter.Acute pulmonary responses to MWCNT inhalation. The Toxicologist, 120 (2011), A53.
39. Z. Li, T. Hulderman, R. Salmen, et al. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ. Health Perspect., 115 (2007), 77–82.
40. P. A. Stapleton, V. Minarchick, A. Cumpston, et al. Time-course of improved coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation. The Toxicologist, 120 (2011), A194.
41. K. Sriram, D. W. Porter, A. M. Jefferson, et al. Neuro inflammation and blood-brain barrier changes following exposure to engineered nanomaterials. The Toxicologist, 108 (2009), A2197.
42. G. Liang, L. Yin, J. Zhang, et al. Effects of subchronic exposure to multi-walled carbon nanotubes in mice. J. Toxicol. Environ. Health A, 73 (2010), 463–470.
43. R. R. Mercer, J. F. Scabilloni, L. Wang, L. A. Battelli, and V. Castranova. Use of labeled single walled carbon nanotubes to study translocation from the lungs. The Toxicologist, 108 (2009), A2192.
44. A. Erdely, T. Hulderman, R. Salmen, et al. Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure: Potential biomarkers. Nano. Lett., 9 (2009), 36–43.
45. T. R. Nurkiewicz, D. W. Porter, M. Barger, et al. Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environ. Health Perspect., 114 (2006), 412–419.
46. T. R. Nurkiewicz, D. W. Porter, A. F. Hubbs, et al. Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicol. Sci., 110 (2009), 191–203.
47. H. Kan, Z. X. Wu, S.-H. Young, et al. Nanoparticle inhalation enhances cardiac protein phosphorylation and neurotransmitter synthesis in the nodose ganglia of rats. The Toxicologist, 120 (2011), A1459.
48. T. L. Knuckles, D. G. Frazer, J. L. Cumpston, et al. Nanoparticle inhalation modulates arteriolar sympathetic constriction: Role of nitric oxide, prostanoids, and α-adrenergic receptors. The Toxicologist, 118 (2010), A1728.
49. S. Regasamy, W. King, B. Eimer, and R. Shaffer. Filtration performance of NIOSH-approved N95 and P100 filtering face mask respirators against 4–30 nanometer-size nanoparticles. J. Occup. Environ. Hyg., 5 (2008), 556–564.