Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2012
  • Online publication date: July 2012

7 - Fate and effects of carbon nanotubes following inhalation

Related content

Powered by UNSILO


Baron, P. A., Deye, G. J., Chen, B. T., et al. (2008). Aerosolization of single-walled carbon nanotubes for an inhalation study. Inhal Toxicol 20(8), 751–760.
Bonner, J. C. (2010a). Nanoparticles as a potential cause of pleural and interstitial lung disease. Proc Am Thorac Soc 7(2), 138–141.
Bonner, J. C. (2010b). Mesenchymal cell survival in airway and interstitial pulmonary fibrosis. Fibrogenesis Tissue Repair 3, 15.
Bonner, J. C. (2004). Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 15, 255–273.
Bonner, J. C. (2008). Respiratory toxicology. In Smart, R. C. and Hodgson, E., eds., Molecular and Biochemical Toxicology, 4th edn (New York: John Wiley & Sons), pp.639–670.
Card, J. W., Zeldin, D. C., Bonner, J. C., and Nestmann, E. R. (2008). Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 295(3), L400–L411.
Cesta, M. F., Ryman-Rasmussen, J. P., Wallace, D. G., et al. (2010). Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol 43(2), 142–151.
Erdely, A., Hulderman, T., Salmen, R., et al. (2009). Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure: Potential biomarkers. Nano Lett 9(1), 36–43.
Hirano, S., Fujitani, Y., Furuyama, A., and Kanno, S. (2010). Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells. Toxicol Appl Pharmacol 249(1), 8–15.
Inoue, K., Koike, E., Yanagisawa, R., et al. (2009). Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol Appl Pharmacol 237(3), 306–316.
Inoue, K., Takano, H., Koike, E., et al. (2008). Effects of pulmonary exposure to carbon nanotubes on lung and systemic inflammation with coagulatory disturbance induced by lipopolysaccharide in mice. Exp Biol Med 233(12), 1583–1590.
Inoue, K., Yanagisawa, R., Koike, E., Nishikawa, M., and Takano, H. (2010). Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: Possible role of oxidative stress. Free Radic Biol Med 48(7), 924–934.
Kelleher, P.Pacheco, K., and Newman, L. S. (2000). Inorganic dust pneumonias: The metal-related parenchymal disorders. Environ Health Perspect 108(suppl. 4), 685–696.
Konduru, N. V., Tyurina, Y. Y., Feng, W., et al. (2009). Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo. PLoS One, 4(2), e4398.
Lam, C. W., James, J. T., McCluskey, R., and Hunter, R. L. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77, 126–134.
Li, J. G., Li, W. X., Xu, J. Y., et al. (2007). Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 22, 415–421.
Ma-Hock, L., Trenmann, S., Strauss, V., et al. (2009) Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112, 468–481.
Mangum, J. B., Turpin, E. A., Antao-Menezes, A., et al. (2006). Single-walled carbon nanotube (SWCNT)-induced interstitial fibrosis in the lungs of rats is associated with increased levels of PDGF mRNA and the formation of unique intercellular carbon structures that bridge alveolar macrophages in situ. Part Fibre Toxicol 3, 15.
Mercer, R. R., Scabilloni, J., Wang, L., et al. (2008). Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol Lung Cell Mol Physiol 294, L87–L97.
Mitchell, L. A., Gao, J., Wal, R. V., et al. (2007). Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100, 203–214.
Mitchell, L. A., Lauer, F. T., Burchiel, S. W., and McDonald, J. D. (2009). Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nature Nanotech 4(7), 451–456.
Muller, J., Huaux, F., Moreau, N., et al. (2005). Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207, 221–231.
Murphy, F. A, Poland, C. A., Duffin, R., et al. (2011). Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura.Am J Pathol 178(6), 2587–2600.
NIOSH (2010). Occupational Exposure to Carbon Nanotubes and Nanofibers. Current Intelligence Bulletin (Washington DC: National Institute for Occupational Safety and Health).
Nygaard, U. C., Hansen, J. S., Samuelsen, M., et al. (2009). Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci 109(1), 113–123.
Park, E. J., Cho, W. S., Jeong, J., et al. (2009). Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology 259(3), 113–121.
Patlolla, A. K., Hussain, S. M., Schlager, J. J., Patlolla, S., and Tchounwou, P. B. (2010). Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of Swiss-Webster mice. Environ Toxicol 25(6), 608–621.
Pauluhn, J. (2010). Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: Toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113(1): 226–242.
Poland, C. A., Duffin, R., Kinloch, I., et al. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7), 423–428.
Porter, D. W., Hubbs, A. F., Mercer, R. R., et al. (2010). Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269, 136–147.
Prato, M., Kostarelos, K., and Bianco, A. (2008). Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41(1), 60–68.
Ryan, J. J., Bateman, H. R., Stover, A., et al. (2007). Fullerene nanomaterials inhibit the allergic response. J Immunol 179, 665–672.
Ryman-Rasmussen, J. P., Cesta, M. F., Brody, A. R., et al. (2009a). Inhaled multi-walled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4(11), 747–751.
Ryman-Rasmussen, J. P., Tewksbury, E. W., Moss, O. R., et al. (2009b). Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in a murine model of allergic asthma. Am J Resp Cell Mol Biol 40(3), 349–358.
Sargent, L. M., Shvedova, A. A., Hubbs, A. F., et al. (2009). Induction of aneuploidy by single-walled carbon nanotubes. Environ Mol Mutagen 50(8), 708–717.
Shvedova, A. A., Kisin, E R., Mercer, R., et al. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289, L698–L708.
Shvedova, A. A., Kisin, E., Murray, A. R., et al. (2008). Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: Inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295(4), L552–L565.
Takagi, A., Hirose, A., Nishimura, T., et al. (2008). Induction of mesothelioma in p53+/– mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33, 105–116.
Visser, C. E., Tekstra, J., Brouwer-Steenbergen, J. J., et al. (1998). Chemokines produced by mesothelial cells: huGRO-alpha, IP-10, MCP-1 and RANTES. Clin Exp Immunol 112(2), 270–275.
Warheit, D. B., Laurence, B. R., Reed, K. L., et al. (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77, 117–125.
Zhu, L., Chang, D. W., Dai, L., and Hong, Y. (2007). DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 7(12), 3592–3597.