Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T18:37:24.864Z Has data issue: false hasContentIssue false

5 - Why is tool use rare in animals?

from Part II - Comparative cognition

Published online by Cambridge University Press:  05 March 2013

Gavin R. Hunt
Affiliation:
Department of Psychology, University of Auckland
Russell D. Gray
Affiliation:
Department of Psychology, University of Auckland
Alex H. Taylor
Affiliation:
Department of Psychology, University of Auckland
Crickette M. Sanz
Affiliation:
Washington University, St Louis
Josep Call
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Christophe Boesch
Affiliation:
Max-Planck-Institut für Evolutionäre Anthropologie, Germany
Get access

Summary

Introduction

Tool use is widespread in the animal kingdom. It has been reported in taxa ranging from insects to primates (see reviews in Beck, 1980; Bentley-Condit & Smith, 2010; Shumaker et al., 2011). However, although it is taxonomically widespread, tool use is relatively rare. The rarity of tool use is surprising given the potential evolutionary advantages that a species can gain. Tools can be used to extract rich food sources such as termites and wood-boring larvae that would otherwise be extremely difficult to obtain. Given the obvious advantages of tool use, an equally obvious question is why tool use is seen in very few species.

A glance across the species that use objects as tools rules out any simple association between the presence or absence of tool use and level of cognitive ability. Tool use is seen in insects, marine invertebrates and fish, as well as in birds and mammals. Indeed, Jane Goodall (1970) recognized that the evolutionary processes underpinning tool use across the animal kingdom will be very different. Beck (1980) emphasized that there was no simple correlation between the presence of tool use and cognitive abilities. Hansell and Ruxton (2008) recently proposed another possible explanation for the rarity of tool use in animals – that tool use was rare simply because of the lack of ecological contexts in which it was advantageous (we call this the lack-of-utility hypothesis). However, we will show here that an “excess of opportunity” clearly contradicts the lack-of-utility hypothesis because in evolutionary terms tool use appears to be potentially much more useful than its frequency in the animal kingdom indicates. Given its potential usefulness, why is tool use so rare?

Type
Chapter
Information
Tool Use in Animals
Cognition and Ecology
, pp. 89 - 118
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, J. (1972). The evolution of the use of tools by feeding animals. Evolution, 26, 464–473.CrossRefGoogle ScholarPubMed
Auersperg, A. M. I., Huber, L. & Gajdon, G. K. (2011). Navigating a tool end in a specific direction: stick-tool use in kea (Nestor notabilis). Biology Letters, 7, 825–828.CrossRefGoogle Scholar
Beck, B. B. (1980). The Use and Manufacture of Tools by Animals. New York: Garland STPM Press.Google Scholar
Beggs, J. R. & Wilson, P. R. (1987). Energetics of South Island kaka (Nestor meridionalis meridionalis) feeding on the larvae of kanuka longhorn beetles (Ochrocydus huttoni). New Zealand Journal of Ecology, 10, 143–147.Google Scholar
Bentley-Condit, V. K. & Smith, E. O. (2010). Animal tool use: current definitions and an updated comprehensive catalog. Behaviour, 147, 185–221.CrossRefGoogle Scholar
Bird, C. D. & Emery, N. J. (2009a). Insightful problem solving and creative tool modification by captive nontool-using rooks. Proceedings of the National Academy of Sciences USA, 106, 10370–10375.CrossRefGoogle ScholarPubMed
Bird, C. D. & Emery, N. J. (2009b). Rooks use stones to raise the water level to reach a floating worm. Current Biology, 19, 1410–1414.CrossRefGoogle ScholarPubMed
Bluff, L. A., Troscianko, J., Weir, A. A. S., Kacelnik, A. & Rutz, C. (2010). Tool use by wild New Caledonian crows Corvus moneduloides at natural foraging sites. Proceedings of the Royal Society of London B, 277, 1377–1385.CrossRefGoogle ScholarPubMed
Brockmann, H. J. (1985). Tool use in digger wasps (Hymenoptera: Sphecinae). Psyche, 92, 309–329.CrossRefGoogle Scholar
Brown, A. L. (1990). Domain-specific principles affect learning and transfer in children. Cognitive Science, 14, 107–133.Google Scholar
Byrne, R. W. (2007). Culture in great apes: using intricate complexity in feeding skills to trace the evolutionary origin of human technical prowess. Philosophical Transactions of the Royal Society of London B, 362, 577–585.CrossRefGoogle ScholarPubMed
Casler, K. & Kelemen, D. (2005). Young children’s rapid learning about artifacts. Developmental Science, 8, 472–480.CrossRefGoogle ScholarPubMed
Cnotka, J., Güntürkün, O., Rehkämper, G., Gray, R. D. & Hunt, G. R. (2008). Extraordinary large brains in tool-using New Caledonian crows (Corvus moneduloides). Neuroscience Letters, 433, 241–245.CrossRefGoogle Scholar
Coss, R. G., Gusé, K. L., Poran, N. S. & Smith, D. G. (1993). Development of antisnake defences in California ground squirrels (Spermophilus beecheyi): II. Microevolutionary effects of relaxed selection from rattlesnakes. Behaviour, 124, 137–162.CrossRefGoogle Scholar
Cutting, N., Apperly, I. A. & Beck, S. R. (2011). Why do children lack the flexibility to innovate tools?Journal of Experimental Child Psychology, 109, 497–511.CrossRefGoogle ScholarPubMed
de Resende, B. D., Ottoni, E. B. & Fragaszy, D. M. (2008). Ontogeny of manipulative behavior and nut-cracking in young tufted capuchin monkeys (Cebus apella): a perception-action perspective. Developmental Science, 11, 828–840.CrossRefGoogle ScholarPubMed
Diekamp, B., Gagliardo, A. & Güntürkün, O. (2002). Nonspatial and subdivision-specific working memory deficits after selective lesions of the avian prefrontal cortex. Journal of Neuroscience, 22, 9573–9580.CrossRefGoogle ScholarPubMed
dos Anjos, L., Debus, S. J. S., Madge, S. C. & Marzluff, J. M. (2009). Family Corvidae (crows). In del Hoyo, J., Elliott, A. & Christie, D. A. (eds.) Handbook of the Birds of the World (pp. 494–640). Barcelona: Lynx Edicions.Google Scholar
Eggleton, P., Williams, P. H. & Gaston, K. J. (1994). Explaining global termite diversity: productivity or history?Biodiversity and Conservation, 3, 318–330.CrossRefGoogle Scholar
Eibl-Eibesfeldt, I. (1961). Uber den Werkzeuggebrauch des Spechtfinken Camarhynchus pallidus (Scalter und Salvin). Zeitschrift fur Tierpsychologie, 18, 343–346.CrossRefGoogle Scholar
Elevitch, C. R. & Manner, H. I. (2006). Aleurites moluccana (kukui), ver. 2.1. In Elevitch, C. R. (ed.) Species Profiles for Pacific Island Agroforestry. Holualoa: Permanent Agriculture Resources.Google Scholar
Enquist, M., Strimling, P., Eriksson, K., Laland, K. & Sjostrand, J. (2010). One cultural parent makes no culture. Animal Behaviour, 79, 1353–1362.CrossRefGoogle Scholar
Erickson, C. J. (1991). Percussive foraging in the aye-aye, Daubentonia madagascariensis. Animal Behaviour, 41, 793–801.CrossRefGoogle Scholar
Fragaszy, D. M. & Adams-Curtis, L. E. (1997). Developmental changes in manipulation in tufted capuchins (Cebus apella) from birth through 2 years and their relation to foraging and weaning. Journal of Comparative Psychology, 111, 201–211.CrossRefGoogle ScholarPubMed
Frey, S. (2008). Tool use, communicative gesture and cerebral asymmetries in the modern human brain. Philosophical Transactions of the Royal Society of London B, 363, 1951–1957.CrossRefGoogle ScholarPubMed
German, T. P. & Barrett, H. C. (2005). Functional fixedness in a technologically sparse culture. Psychological Science, 16, 1–5.CrossRefGoogle Scholar
German, T. P. & Defeyter, M. A. (2000). Immunity to functional fixedness in young children. Psychnomic Bulletin & Review, 7, 707–712.CrossRefGoogle ScholarPubMed
Goodall, J. van Lawick (1970). Tool-using in primates and other vertebrates. Advances in the Study of Behaviour, 3, 195–249.CrossRefGoogle Scholar
Guillette, L. M, Hollis, K. L. & Markarian, A. (2009). Learning in a sedentary insect predator: antlions (Neuroptera: Myrmeleontidae) anticipate a long wait. Behavioural Processes, 80, 224–232.CrossRefGoogle Scholar
Haidle, M. N. (2010). Working-memory capacity and the evolution of modern cognitive potential. Current Anthropology, 51, S149–S166.CrossRefGoogle Scholar
Halford, G. S., Wilson, W. H. & Phillips, S. (1998). Processing capacity defined by relational complexity: implications for comparative, developmental, and cognitive psychology. Behavioral and Brain Sciences, 21, 803–865.CrossRefGoogle ScholarPubMed
Hall, K. R. L. (1963). Tool-using performances as indicators of behavioural adaptability. Current Anthropology, 4, 479–494.CrossRefGoogle Scholar
Hansell, M. & Ruxton, G. D. (2008). Setting tool use within the context of animal construction behaviour. Trends in Ecology and Evolution, 23, 73–78.CrossRefGoogle ScholarPubMed
Hochner, B. (2008). Octopuses. Current Biology, 18, R897–R898.CrossRefGoogle ScholarPubMed
Hochner, B., Shomrat, T. & Fiorito, G. (2006). The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biological Bulletin, 210, 308–317.CrossRefGoogle ScholarPubMed
Holzhaider, J. C., Hunt, G. R. & Gray, R. D. (2010a). The development of pandanus tool manufacture in wild New Caledonian crows. Behaviour, 147, 553–586.CrossRefGoogle Scholar
Holzhaider, J. C., Hunt, G. R. & Gray, R. D. (2010b). Social learning in New Caledonian crows. Learning and Behavior, 38, 206–219.CrossRefGoogle ScholarPubMed
Holzhaider, J. C., Hunt, G. R., Sibley, M. D., et al. (2011). The social system of New Caledonian crows. Animal Behaviour, 81, 83–92.CrossRefGoogle Scholar
Humle, T., Snowden, C. T. & Matsuzawa, T. (2009). Social influences on ant-dipping acquisition in the wild chimpanzees (Pan troglodytes verus) of Bossou, Guinea, West Africa. Animal Cognition, 12, S37–S48.CrossRefGoogle ScholarPubMed
Hunt, G. R. (2000). Tool use by the New Caledonian crow Corvus moneduloides to obtain Cerambycidae from dead wood. Emu, 100, 109–114.CrossRefGoogle Scholar
Hunt, G. R. & Gray, R. D. (2002). Species-wide manufacture of stick-type tools by New Caledonian crows. Emu, 102, 349–353.CrossRefGoogle Scholar
Hunt, G. R. & Gray, R. D. (2003). Diversification and cumulative evolution in tool manufacture by New Caledonian crows. Proceedings of the Royal Society of London B, 270, 867–874.CrossRefGoogle Scholar
Hunt, G. R. & Gray, R. D. (2004). Direct observations of pandanus-tool manufacture and use by a New Caledonian crow (Corvus moneduloides). Animal Cognition, 7, 114–120.CrossRefGoogle Scholar
Hunt, G. R. & Gray, R. D. (2007). Parallel tool industries in New Caledonian crows. Biology Letters, 3, 173–175.CrossRefGoogle ScholarPubMed
Hunt, G. R., Lambert, C. & Gray, R. D. (2007). Cognitive requirements for tool use by New Caledonian crows (Corvus moneduloides). New Zealand Journal of Zoology, 34, 1–7.CrossRefGoogle Scholar
Hunt, G. R., Holzhaider, J. C. & Gray, R. D. (2012). Prolonged parental feeding in New Caledonian crows. Ethology, 118, 423–430.CrossRefGoogle Scholar
Inoue-Nakamura, N. & Matsuzawa, T. (1997). Development of stone tool use by wild chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 111, 159–173.CrossRefGoogle Scholar
James, H. F. & Olsen, S. L. (2003). A giant new species of Nukupuu (Fringillidae: Drepanidini: Hemignathus) from the island of Hawaii. Auk, 120, 970–981.CrossRefGoogle Scholar
Kacelnik, A. (2009). Tools for thought or thoughts for tools?Proceedings of the National Academy of Sciences USA, 106, 10071–10072.CrossRefGoogle ScholarPubMed
Kenward, B., Weir, A. A. S., Rutz, C. & Kacelnik, A. (2005). Tool manufacture by naive juvenile crows. Nature, 433, 121.CrossRefGoogle ScholarPubMed
Kenward, B., Rutz, C., Weir, A. A. S. & Kacelnik, A. (2006). Development of tool use in New Caledonian crows: inherited action patterns and social influences. Animal Behaviour, 72, 1329–1343.CrossRefGoogle Scholar
Kortlandt, A. & Kooij, M. (1963). Protohominid behaviour in primates. Symposium of the Zoolological Society London, 10, 61–88.Google Scholar
Laland, K. N., Odling-Smee, J. & Feldman, M. W. (2000). Niche construction, biological evolution, and cultural change. Behavioral and Brain Sciences, 23, 131–146.CrossRefGoogle ScholarPubMed
Langergraber, K. E., Boesch, C., Inoue, E., et al. (2011). Genetic and “cultural” similarity in wild chimpanzees. Proceedings of the Royal Society of London B, 278, 408–416.CrossRefGoogle ScholarPubMed
Lefebvre, L., Whittle, P. W., Lascaris, E. & Finkelstein, A. (1997). Feeding innovations and forebrain size in birds. Animal Behaviour, 53, 549–560.CrossRefGoogle Scholar
Lefebvre, L., Nicolakakis, N. & Boire, D. (2002). Tools and brains in birds. Behaviour, 139, 939–973.CrossRefGoogle Scholar
Lefebvre, L., Reader, R. M. & Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain, Behavior and Evolution, 63, 233–246.CrossRefGoogle ScholarPubMed
Lonsdorf, E. V. (2006). What is the role of mothers in the acquisition of termite-fishing behaviors in wild chimpanzees (Pan troglodytes schweinfurthii)?Animal Cognition, 9, 36–46.CrossRefGoogle ScholarPubMed
Lycett, S. J., Collard, M. & McGrew, W. C. (2010). Are behavioural differences among wild chimpanzee communities genetic or cultural? An assessment using tool-use data and phylogenetic methods. American Journal of Physical Anthropology, 142, 461–467.CrossRefGoogle ScholarPubMed
Magat, M. & Brown, C. (2009). Laterality enhances cognition in Australian parrots. Proceedings of the Royal Society of London B, 276, 4155–4162.CrossRefGoogle ScholarPubMed
Maravita, A. & Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Sciences, 8, 79–86.CrossRefGoogle Scholar
Mather, J. A. (2008). Cephalopod consciousness: behavioural evidence. Consciousness and Cognition, 17, 37–48.CrossRefGoogle ScholarPubMed
Matsuzawa, T. (1994). Field experiments on use of stone tool by chimpanzees in the wild. In Wrangham, R. W., McGrew, W. C., de Waal, F. B. M. & Heltne, P. (eds.) Chimpanzee Cultures (pp. 351–370). Cambridge, MA: Harvard University Press.Google Scholar
Matsuzawa, T., Biro, D., Humle, T., et al. (2001). Emergence of culture in wild chimpanzees: education by master-apprenticeship. In Matsuzawa, T. (ed.) Primate Origins of Human Cognition and Behavior (pp. 557–574). Tokyo: Springer.CrossRefGoogle Scholar
McGrew, W. C. (1992). Chimpanzee Material Culture: Implications for Human Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
McGrew, W. C. (2010). Chimpanzee technology. Science, 328, 579–580.CrossRefGoogle ScholarPubMed
Mehlhorn, J., Hunt, G. R., Gray, R. D., Rehkämper, G. & Güntürkün, O. (2010). Tool-making New Caledonian crows have large associative brain areas. Brain, Behavior and Evolution, 75, 63–70.CrossRefGoogle ScholarPubMed
Morton, J. M., Plentovich, S. & Sharp, T. (1999). Reproduction and Juvenile Dispersal of Mariana Crows (Corvus kubaryi) on Rota 1996–1999. Honolulu: US Fish and Wildlife Service, Pacific Islands EcoRegion.Google Scholar
Mulcahy, N. J. & Call, J. (2006). How great apes perform on a modifed trap-tube task. Animal Cognition, 9, 193–199.CrossRefGoogle Scholar
Nicolakakis, N. & Lefebvre, L. (2000). Forebrain size and innovation rate in European birds: feeding, nesting and confounding variables. Behaviour, 137, 1415–1427.CrossRefGoogle Scholar
Packard, A. (1972). Cephalopods and fish: the limits of convergence. Biological Reviews, 47, 241–307.CrossRefGoogle Scholar
Paoletti, M. G., Buscardo, E., Vanderjagt, D. J., et al. (2003). Nutrient content of termites (Syntermes soldiers) consumed by Makiritare Amerindians of the Alto Orinoco of Venezuela. Ecology of Food and Nutrition, 42, 177–191.CrossRefGoogle Scholar
Pierce, J. D. (1986). A review of tool use in insects. The Florida Entomologist, 69, 95–104.CrossRefGoogle Scholar
Plentovich, S., Morton, J. M., Bart, J., et al. (2005). Population trends of Mariana crow Corvus kubaryi on Rota, Commonwealth of the Northern Mariana Islands. Bird Conservation International, 15, 211–224.CrossRefGoogle Scholar
Potter, E. F. (1970). Anting by wild birds, its frequency and probable purpose. Auk, 87, 692–713.CrossRefGoogle Scholar
Price, E. E., Lambeth, S. P., Schapiro, S. J. & Whiten, A. (2009). A potent effect of observational learning on chimpanzee tool construction. Proceedings of the Royal Society of London B, 276, 3377–3383.CrossRefGoogle ScholarPubMed
Rawlins, D. R. & Handasyde, K. A. (2002). The feeding ecology of the striped possum Dactylopsila trivirgata (Marsupialia: Petauridae) in far north Queensland, Australia. Journal of Zoology, 257, 195–206.CrossRefGoogle Scholar
Read, D. W. (2008). Working memory: a cognitive limit to non-human primate recursive thinking prior to hominid evolution. Evolutionary Psychology, 6, 676–714.CrossRefGoogle Scholar
Reader, S. M. & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences USA, 99, 4436–4441.CrossRefGoogle ScholarPubMed
Reader, S. M. & Laland, K. N. (2003). Animal innovation: an introduction. In Reader, S. M. & Laland, K. N. (eds.) Animal Innovation (pp. 3–35). Oxford: Oxford University Press.CrossRefGoogle Scholar
Rutledge, R. & Hunt, G. R. (2004). Lateralized tool use in wild New Caledonian crows. Animal Behaviour, 67, 327–332.CrossRefGoogle Scholar
Rutz, C., Bluff, L. A., Reed, N., et al. (2010). The ecological significance of tool use in New Caledonian crows. Science, 329, 1523–1526.CrossRefGoogle ScholarPubMed
Ruxton, G. D. & Hansell, M. H. (2011). Fishing with a bait or lure: a brief review of the cognitive issues. Ethology, 117, 1–9.CrossRefGoogle Scholar
Savage, C. (2005). Crows: Encounters with the Wise Guys of the Avian World. Vancouver: Greystone Books.Google Scholar
Schiller, P. H. (1952). Innate motor actions as a basis of learning: manipulative patterns in the chimpanzee. In Schiller, C. H. (ed.) The Development of a Modern Concept (pp. 264–287). New York: International Universities Press.Google Scholar
Seed, A. M., Tebbich, S., Emery, N. J. & Clayton, N. S. (2006). Investigating physical cognition in rooks (Corvus frugilegus). Current Biology, 16, 697–701.CrossRefGoogle Scholar
Seed, A. M., Call, J., Emery, N. J. & Clayton, N. S. (2009). Chimpanzees solve the trap problem when the confound of tool-use is removedJournal of Experimental Psychology, 35, 23–34.Google ScholarPubMed
Shettleworth, S. J. (2009). Animal cognition: deconstructing avian insight. Current Biology, 19, R1039–R1040.CrossRefGoogle ScholarPubMed
Shettleworth, S. J. (2010). Cognition, Evolution and Behavior. 2nd edn. New York: Oxford University Press.Google Scholar
Shumaker, R. W., Walkup, K. R. & Beck, B. B. (2011). Animal Tool Behaviour: The Use and Manufacture of Tools by Animals. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Amant, R. & Horton, T. E. (2008). Revisiting the definition of animal tool use. Animal Behaviour, 75, 1199–1208.CrossRefGoogle Scholar
Sterelny, K. (2006). The evolution and evolability of culture. Mind and Language, 21, 137–165.CrossRefGoogle Scholar
Striedter, G. F. (2005). Principles of Brain Evolution. Sunderland, MA: Sinauer Associates.Google Scholar
Takeshita, H., Fragaszy, D., Mizuno, Y., et al. (2005). Exploring by doing: how young chimpanzees discover surfaces through actions with objects. Infant Behavior and Development, 28, 316–328.CrossRefGoogle Scholar
Taylor, A. H. & Gray, R. D. (2009). Animal cognition: Aesop’s fable flies from fiction to fact. Current Biology, 19, R731–R732.CrossRefGoogle Scholar
Taylor, A. H. & Hunt, G. R., Holzaider, J. C. & Gray, R. D. (2007). Spontaneous metatool use in New Caledonian crows. Current Biology, 17, 1504–1507.CrossRefGoogle ScholarPubMed
Taylor, A. H., Hunt, G. R., Medina, F. S. & Gray, R. D. (2009a). Do New Caledonian crows solve physical problems through causal reasoning?Proceedings of the Royal Society of London B, 276, 247–254.CrossRefGoogle ScholarPubMed
Taylor, A. H., Roberts, R., Hunt, G. R. & Gray, R. D. (2009b). Causal reasoning in New Caledonian crows: ruling out spatial analogies and sampling error. Communicative and Integrative Biology, 2, 311–312.CrossRefGoogle ScholarPubMed
Taylor, A. H., Elliffe, D., Hunt, G. R. & Gray, R. D. (2010). Complex cognition and behavioural innovation in New Caledonian crows. Proceedings of the Royal Society of London B, 277, 2637–2643.CrossRefGoogle ScholarPubMed
Taylor, A. H., Elliffe, D., Hunt, G. R., et al. (2011a). New Caledonian crows learn the functional properties of novel tool types. PLoS ONE, 6, ez6887.
Taylor, A. H., Hunt, G. R. & Gray, R. D. (2011b). Context-dependent tool use in New Caledonian crows. Biology Letters, 8, 205–207.CrossRefGoogle ScholarPubMed
Taylor, A. H., Miller, R. & Gray, R. D. (2012a). New Caledonian crows reason about hidden causal agents. Proceedings of the National Academy of Sciences USA, 109, 16389–16391.CrossRefGoogle ScholarPubMed
Taylor, A. H., Knaebe, B. & Grey, R. D. (2012b). An end to insight? New Caledonain crows can spontaneously solve problems without planning their actions. Proceedings of the Royal Society of London B, published online October 24, 2012.CrossRefGoogle ScholarPubMed
Tebbich, S., Taborsky, M., Fessl, B. & Blomqvist, D. (2001). Do woodpecker finches acquire tool-use by social learning?Proceedings of the Royal Society of London B, 268, 2189–2193.CrossRefGoogle ScholarPubMed
Tebbich, S., Taborsky, M. & Fessl, B. (2002). The ecology of tool-use in the woodpecker finch (Cactospiza pallida). Ecology Letters, 5, 656–664.CrossRefGoogle Scholar
Tebbich, S., Seed, A. M., Emery, N. J. & Clayton, N. S. (2007). Non-tool-using rooks Corvus frugilegus solve the trap-tube task. Animal Cognition, 10, 225–231.CrossRefGoogle Scholar
Teschke, I., Cartmill, E. A., Stankewitz, S. & Tebbich, S. (2011). Sometimes tool use is not the key: no evidence for cognitive adaptive specializations in tool-using woodpecker finches. Animal Behaviour, 82, 945–956.CrossRefGoogle Scholar
Thouless, C. R., Fanshawe, J. H. & Bertram, B. C. R. (1989). Egyptian vultures Neophron percnopterus and ostrich Struthio camelus eggs: the origins of stone throwing behavior. Ibis, 131, 9–15.CrossRefGoogle Scholar
Timmermanns, S., Lefebvre, L., Boire, D. & Basu, P. (2000). Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds. Brain, Behavior and Evolution, 56, 196–203.CrossRefGoogle Scholar
Tomback, D. F. (1986). Observations on the behavior and ecology of the Mariana crow. The Condor, 88, 398–401.CrossRefGoogle Scholar
Troscianko, J., von Bayern, A. M. P., Chappell, J., Rutz, C. & Martin, G. R. (2012). Extreme binocular vision and straight bill facilitate tool use in New Caledonian crows. Nature Communications, 3, 1110, .CrossRefGoogle ScholarPubMed
van Schaik, C. P. & Knott, C. D. (2001). Geographic variation in tool use on Neesia fruits in orangutans. American Journal of Physical Anthropology, 114, 331–334.CrossRefGoogle ScholarPubMed
van Schaik, C. P., Deaner, R. O. & Merrill, M. Y. (1999). The conditions for tool use in primates: implications for the evolution of material culture. Journal of Human Evolution, 36, 719–741.CrossRefGoogle ScholarPubMed
van Schaik, C. P., Ancrenaz, M., Borgen, G. & Galdikas, B. (2003). Orangutan cultures and the evolution of material culture. Science, 299, 102–105.CrossRefGoogle ScholarPubMed
von Bayern, A. M. P., Heathcote, R. J. P., Rutz, C. & Kacelnik, A. (2009). The role of experience in problem solving in innovative tool use in crows. Current Biology, 19, 1965–1968.CrossRefGoogle ScholarPubMed
Weir, A. A. S., Chappell, J. & Kacelnik, A. (2002). Shaping of hooks in New Caledonian crows. Science, 297, 981.CrossRefGoogle ScholarPubMed
Whiten, A., Goodall, J., McGrew, W. C., et al. (1999). Cultures in chimpanzees. Nature, 399, 682–685.CrossRefGoogle ScholarPubMed
Whiten, A., Goodall, J., McGrew, W. C., et al. (2001). Charting cultural variation in chimpanzees. Behaviour, 138, 1481–1516.CrossRefGoogle Scholar
Wolpert, D. M. & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11, R729–R732.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×