Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: January 2014

9 - Titan's upper atmosphere: thermal structure, dynamics, and energetics


9.1 Introduction and some history

Titan, with its dense atmosphere, low gravity, weak solar insolation, and complex composition, provides a unique example of a planetary upper atmosphere. The large mass of the atmosphere, coupled with low gravity, results in a greatly extended atmosphere where the plane parallel assumption, nearly universal in terrestrial and giant planet atmosphere studies, no longer applies. Moreover, the weak gravity results in large escape rates that may play a significant role in upper atmospheric thermal balance. The weak solar insolation means that in many cases dynamical processes can dominate over solar processes, while at the same time the complex composition causes radiative cooling processes to be more important than in most other planetary upper atmospheres. Most of the time Titan orbits within Saturn's magnetosphere and the interaction with energetic particle populations may significantly alter the upper atmosphere. Measurements by the Cassini spacecraft have allowed us to greatly extend our knowledge of the thermal balance in Titan's upper atmosphere, although the main result so far may be the realization that the simple descriptions employed before Cassini fail to capture the complexity and variability of this enigmatic atmosphere. To understand the progress enabled by Cassini-Huygens measurements, we first review our knowledge of thermal balance in Titan's upper atmosphere based on observations by the Voyager spacecraft and ground-based telescopes.

Aboudan, A., Colombatti, G., Ferri, F., and Angrilli, F. 2008. Huygens Probe Entry Trajectory and Attitude Estimated Simultaneously with Titan Atmospheric Structure by Kalman Filtering. Planet. Space Sci., 56(Apr.), 573–585. doi:10.1016/j.pss.2007.10.006.
Achterberg, R. K., Conrath, B. J., Gierasch, P. J., et al. 2008. Titan's Middle-Atmospheric Temperatures and Dynamics Observed by the Cassini Composite Infrared Spectrometer. Icarus, 194(Mar.), 263–277. doi:10.1016/j.icarus.2007.09.029.
Ågren, K., Andrews, D. J., Buchert, S. C., et al. 2011. Detection of Currents and Associated Electric Fields in Titan's Ionosphere from Cassini Data. J. Geophys. Res., 116(A4), A04313.
Arridge, C. S., Andre, N., Bertucci, C. L., et al. 2011. Upstream of Saturn and Titan. Sp. Sci. Rev., 162(Dec.), 25–83. doi:10.1007/s11214-011-9849-x.
Bell, J. M., Bougher, S. W., Waite, J. H., et al. 2010a. Simulating the One-Dimensional Structure of Titan's Upper Atmosphere: 1. Formulation of the Titan Global Ionosphere-Thermosphere Model and Benchmark Simulations. J. Geophys. Res., 115(E12), E12002.
Bell, J. M., Bougher, S. W., Waite, J. H. Jr., et al. 2010b. Simulating the One-Dimensional Structure of Titan's Upper Atmosphere: 2. Alternative Scenarios for Methane Escape. J. Geophys. Res., 115(Dec.), 12018.
Bell, J. M., Bougher, S. W., Waite, J. H. Jr., et al. 2011a. Simulating the One-Dimensional Structure of Titan's Upper Atmosphere: 3. Mechanisms Determining Methane Escape. J. Geophys. Res., 116(E), 11002.
Bell, J. M., Westlake, J., and Waite, J. H. 2011b. Simulating the Time-Dependent Response of Titan's Upper Atmosphere to Periods of Magnetospheric Forcing. Geophys. Res. Lett., 38(6), L06202.
Brandt, P. C., Dialynas, K., Dandouras, I., et al. 2012. The Distribution of Titan's High-Altitude (out to 50,000 km) Exosphere from Energetic Neutral Atom (ENA) Measurements by Cassini/INCA. Planet. Space Sci., 60(1), 107–114.
Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., et al. 1981. Extreme Ultraviolet Observations from Voyager 1 Encounter with Saturn. Science, 212(Apr.), 206–211. doi:10.1126/science.212.4491.206.
Bruinsma, S. L., and Forbes, J. M. 2008. Medium- to Large-Scale Density Variability as Observed by CHAMP. Space Weather, 6(8), S08002.
Capalbo, F. J., Bénilan, Y., Yelle, R. V, et al. 2013. Solar Occultation by Titan Measured by Cassini/UVIS. Astrophys. J. Letts., Jan., submitted.
Coates, A. J., Crary, F. J., Lewis, G. R., et al. 2007. Discovery of Heavy Negative Ions in Titan's Ionosphere. Geophys. Res. Lett., 34(Nov.), 1–6.
Colombatti, G., Aboudan, A., Ferri, F., and Angrilli, F. 2008a. Huygens Probe Entry Dynamic Model and Accelerometer Data Analysis. Planet. Space Sci., 56(Apr.), 601–612. doi:10.1016/j.pss.2007.11.018.
Colombatti, G., Withers, P., Ferri, F., et al. 2008b. Reconstruction of the Trajectory of the Huygens Probe Using the Huygens Atmospheric Structure Instrument HASI). Planet. Space Sci., 56(Apr.), 586–600. doi:10.1016/j.pss.2007.11.017.
Creasey, J. E., Forbes, J. M., and Hinson, D. P. 2006. Global and Seasonal Distribution of Gravity Wave Activity in Mars' Lower Atmosphere Derived from MGS Radio Occultation Data. Geophys. Res. Lett., 33(1), L01803.
Cui, J., Galand, M., Yelle, R. V, et al. 2009. Diurnal Variations of Titan's Ionosphere. J. Geophys. Res., 114(A6), A06310.
Cui, J., Yelle, R. V, Strobel, D. F., et al. 2012. The CH4 Structure in Titan's Upper Atmosphere Revisited. J. Geophys. Res., 117(E), 11006.
de La Haye, V, Waite, J. H., Johnson, R. E., et al. 2007. Cassini Ion and Neutral Mass Spectrometer Data in Titan's Upper Atmosphere and Exosphere: Observation of a Suprathermal Corona. J. Geophys. Res., 112(June), 07309.
de La Haye, V, Waite, J. H., Cravens, T. E., et al. 2008. Heating Titan's Upper Atmosphere. J. Geophys. Res., 113(A), 11314.
Flasar, F. M., Samuelson, R. E., and Conrath, B. J.. 1981. Titan's Atmosphere: Temperature and Dynamics. Nature, 292(5825), 693–698.
Forbes, J. M., and Konopliv, A. 2007. Oscillation of Venus' Upper Atmosphere. Geophys. Res. Lett., 34(8), L08202.
Forget, F., Montmessin, F., Bertaux, J.-L., et al. 2009. Density and Temperatures of the Upper Martian Atmosphere Measured by Stellar Occultations with Mars Express SPICAM. J. Geophys. Res., 114(E1), E01004.
Fritts, D. C., and Alexander, M. J. 2003. Gravity Wave Dynamics and Effects in the Middle Atmosphere. Rev. Geophys., 41(Apr.), 1003. doi:10.1029/2001RG000106.
Fulchignoni, M., Ferri, F., Angrilli, F., et al. 2005. In Situ Measurements of the Physical Characteristics of Titan's Environment. Nature, 438(Dec.), 785–791. doi:10.1038/nature04314.
Fulchignoni, M., Ferri, F., Angrilli, F., et al. 2005. In Situ Measurements of the Physical Characteristics of Titan's Environment. Nature, 438(7069), 785–791.
Gardner, L. C., and Schunk, R. W. 2011. Large-Scale Gravity Wave Characteristics Simulated with a High-Resolution Global Thermosphere-Ionosphere Model. J. Geophys. Res., 116(A6), A06303.
Hickey, M. P., Walterscheid, R. L., and Schubert, G. 2011. Gravity Wave Heating and Cooling of the Thermosphere: Sensible Heat Flux and Viscous Flux of Kinetic Energy. J. Geophys. Res., 116(A12), A12326.
Hubbard, W. B., Sicardy, B., Miles, R., et al. 1993. The Occultation of 28 SGR by Titan. Astron. Astrophys., 269(Mar.), 541–563.
Kasprzak, W. T., Hedin, A. E., Mayr, H. G., and Niemann, H. B. 1988. Wavelike Perturbations Observed in the Neutral Thermosphere of Venus. J. Geophys. Res. (ISSN 0148-0227), 93(Oct.), 11237.
Koskinen, T. T., Yelle, R. V, Snowden, D. S., et al. 2011. The Mesosphere and Lower Thermosphere of Titan Revealed by Cassini/UVIS Stellar Occultations. Icarus, 216(Dec.), 507–534. doi:10.1016/j.icarus.2011.09.022.
Kostiuk, T., Hewagama, T., Fast, K. E., et al. 2010. High Spectral Resolution Infrared Studies of Titan Winds, Temperature, and Composition. Planet. Space Sci. Sept., 1-9.
Lavvas, P., Yelle, R. V, and Vuitton, V 2009. The Detached Haze Layer in Titan's Mesosphere. Icarus, 201(June), 626–633. doi:10.1016/j.icarus.2009.01.004.
Lellouch, E., Hunten, D. M., Kockarts, G., and Coustenis, A. 1990. Titan's Thermosphere Profile. Icarus, 83 (Feb.), 308–324. doi:10.1016/0019-1035(90)90070-P.
Liang, M., and Yung, Y. 2007. Photolytically Generated Aerosols in the Mesosphere and Thermosphere of Titan. Astrophys. J., 661, L199–L202.
Magee, B. A., Waite, J. H., Mandt, K. E., et al. 2009. INMS-Derived Composition of Titan's Upper Atmosphere: Analysis Methods and Model Comparison. Planet. Space Sci., 57(14–15), 1895–1916.
Matcheva, K. I., and Strobel, D. F. 1999. Heating of Jupiter's Thermosphere by Dissipation of Gravity Waves Due to Molecular Viscosity and Heat Conduction. Icarus, 140(July), 328.
Mayr, H. G., Harris, I., Kasprzak, W. T., et al. 1988. Gravity Waves in the Upper Atmosphere of Venus. J. Geophys. Res. (ISSN 0148-0227), 93(Oct.), 11247.
Michael, M., and Johnson, R. E.. 2005. Energy Deposition of Pickup Ions and Heating of Titan's Atmosphere. Planet. Space Sci., 53(1), 1510–1514.
Miyoshi, Y., Forbes, J. M., and Moudden, Y. 2011. A New Perspective on Gravity Waves in the Martian Atmosphere: Sources and Features. J. Geophys. Res., 116(E9), E09009.
Moreno, R., Marten, A., and Hidayat, T. 2005. Interferometric Measurements of Zonal Winds on Titan. Astron. Astrophys., 437(July), 319–328. doi:10.1051/0004-6361:20042117.
Müller-Wodarg, I. C. F., and Yelle, R. V 2002. The Effect of Dynamics on the Composition of Titan's Upper Atmosphere. Geophys. Res. Lett., 29(Dec.), 54–1.
Müller-Wodarg, I. C. F., Yelle, R. V, Mendillo, M., et al. 2000. The Thermosphere of Titan Simulated by a Global Three-Dimensional Time-Dependent Model. J. Geophys. Res., 105, 20833–20856. doi:10.1029/2000JA000053.
Müller-Wodarg, I. C. F., Yelle, R. V, Mendillo, M. J., and Aylward, A. D. 2003. On the Global Distribution of Neutral Gases in Titan's Upper Atmosphere and Its Effect on the Thermal Structure. J. Geophys. Res., 108(A12), 18–1. doi:10.1029/2003JA010054.
Müller-Wodarg, I. C. F., Yelle, R. V, Borggren, N., and Waite, J. H. 2006. Waves and Horizontal Structures in Titan's Thermosphere. J. Geophys. Res., 111(A10), 12315. doi:10.1029/2006JA011961.
Müller-Wodarg, I. C. F., Yelle, R. V, Cui, J., and Waite, J. H. 2008. Horizontal Structures and Dynamics of Titan's Thermosphere. J. Geophys. Res., 113(E12), 10005. doi:10.1029/2007JE003033.
Parish, H., Schubert, G., and Hickey, M. 2009. Propagation of Tropospheric Gravity Waves into the Upper Atmosphere of Mars. Icarus.
Porco, C. C., Baker, E., Barbara, J., et al. 2005. Imaging of Titan from the Cassini Spacecraft. Nature, 434(Mar.), 159–168. doi:10.1038/nature03436.
Rishbeth, H., Yelle, R. V, and Mendillo, M. 2000. Dynamics of Titan's Thermosphere. Planet. Space Sci., 48(Jan.), 51.
Roman, M. T., West, R. A., Banfield, D. J., et al. 2009. Determining a Tilt in Titan's North-South Albedo Asymmetry from Cassini Images. Icarus, 203(1), 242–249.
Rymer, A. M., Smith, H. T., Wellbrock, A., et al. 2009. Discrete Classification and Electron Energy Spectra of Titan's Varied Magnetospheric Environment. Geophys. Res. Lett., 36(Aug.), 15109.
Shah, M. B., Latimer, C. J., Montenegro, E. C., et al. 2009. The Implantation and Interactions of O+ in Titan's Atmosphere: Laboratory Measurements of Collision-induced Dissociation of N2 and Modeling of Positive Ion Formation. Astrophys. J., 703(Oct.), 1947.
Sicardy, B., Ferri, F., Roques, F., et al. 1999. The Structure of Titan's Stratosphere from the 28 Sgr Occultation. Icarus, 142(Dec.), 357–390. doi:10.1006/icar.1999.6219.
Sicardy, B., Colas, F., Widemann, T., et al. 2006. The Two Titan Stellar Occultations of 14 November 2003. J. Geophys. Res., 111(E10), 11. doi:10.1029/2005JE002624.
Sillanpää, I., Kallio, E., Jarvinen, R., and Janhunen, P. 2007. Oxygen Ions at Titan's Exobase in a Voyager 1-Type Interaction from a Hybrid Simulation. J. Geophys. Res., 112(A12), A12205.
Simon, S., Wennmacher, A., Neubauer, F. M., et al. 2010. Titan's Highly Dynamic Magnetic Environment: A Systematic Survey of Cassini Magnetometer Observations from Fly Bys TA-T62. Planet. Space Sci., 58(10), 1230–1251.
Smith, C.G.A., and Aylward, A.D. 2009. Coupled Rotational Dynamics of Jupiter's Thermosphere and Magnetosphere. Ann. Geophys, 27, 199–230.
Smith, G. R., Strobel, D. F., Broadfoot, A. L., et al. 1982. Titan's Upper Atmosphere – Composition and Temperature from the EUV Solar Occultation Results. J. Geophys. Res., 87(Mar.), 1351–1359. doi:10.1029/JA087iA03p01351.
Snowden, D. S., and Yelle, R. V 2013. The Thermal Structure of Titan's Upper Atmosphere, II: Energetics, Icarus, in press.
Snowden, D. S., Yelle, R. V, Galand, M., et al. 2013a. Auroral electron precipitation and flux tube erosion in Titan's upper atmosphere, Icarus, 226, 186–204, doi:10.1016/j.icarus.2013.05.021.
Snowden, D. S., Yelle, R. V, Cui, J., et al. 2013b. The Thermal Structure of Titan's Upper Atmosphere, I: Temperature Profiles from Cassini INMS Observations. Icarus, 226, 552–582, doi:10.1016/j.icarus.2013.06.006.
Strobel, D. F., Summers, M. E., and Zhu, X. 1992. Titan's Upper Atmosphere – Structure and Ultraviolet Emissions. Icarus, 100(Dec.), 512–526. doi:10.1016/0019-1035(92)90114-M.
Strobel, D. F. 2006. Gravitational tidal waves in Titan's upper atmosphere. Icarus, 182(May), 251.
Strobel, D. F.. 2008. Titan's Hydrodynamically Escaping Atmosphere. Icarus, 193(Feb.), 588.
Strobel, D. F.. 2012. Hydrogen and Methane in Titan's Atmosphere: Chemistry, Diffusion, Escape, and the Hunten Limiting Flux Principle. Can. J. Physics, 90(8), 795–805. doi:10.1139/p11-131.
Tokano, T. 2010. Westward Rotation of the Atmospheric Angular Momentum Vector of Titan by Thermal Tides. Planet. Space Sci., 58(5), 814–829.
Tokano, T., and Neubauer, F. M. 2002. Tidal Winds on Titan Caused by Saturn. Icarus, 158(2), 499–515.
Tseng, W., Ip, W., and Kopp, A. 2008. Exospheric Heating by Pickup Ions at Titan. Adv. Space Res., 42(1), 54–60.
Vadas, S. 2009. Generation of Large-Scale Gravity Waves and Neutral Winds in the Thermosphere from the Dissipation of Convectively Generated Gravity Waves. J. Geophys. Res., 114, A10310.
Vadas, S. L. 2007. Horizontal and Vertical Propagation and Dissipation of Gravity Waves in the Thermosphere from Lower Atmospheric and Thermospheric Sources. J. Geophys. Res., 112(A6), A06305.
Vasyliunas, V M., and Song, 2005. Meaning of Ionospheric Joule Heating. J. Geophys. Res., 110(Feb.), 02301.
Vervack, R. J., Sandel, B. R., and Strobel, D. F. 2004. New Perspectives on Titan's Upper Atmosphere from a Reanalysis of the Voyager 1 UVS Solar Occultations. Icarus, 170(July), 91–112. doi:10.1016/j.icarus.2004.03.005.
Volkov, A. N., Johnson, R. E., Tucker, O. J., and Erwin, J. T. 2011. Thermally Driven Atmospheric Escape: Transition from Hydrodynamic to Jeans Escape. Astrophys. J. Lett., 729(Mar.), L24. doi:10.1088/2041-8205/729/2/L24.
Waite, J. H., Niemann, H., Yelle, R. V., et al. 2005. Ion Neutral Mass Spectrometer Results from the First Flyby of Titan. Science, 308(May), 982–986. doi:10.1126/science.1110652.
Walterscheid, R. L. 1981. Dynamical Cooling Induced by Dissipating Internal Gravity Waves. Geophys. Res. Lett., 8(Dec.), 1235–1238. doi:10.1029/GL008i012p01235.
Walterscheid, R. L.. 2005. Acoustic Waves Generated by Gusty Flow over Hilly Terrain. J. Geophys. Res., 110(A10), A10307.
West, R. A., Balloch, J., Dumont, P., et al. 2011. The Evolution of Titan's Detached Haze Layer near Equinox in 2009. Geophys. Res. Lett., 38(Mar.), 6204. doi:10.1029/2011GL046843.
Westlake, J. H., Bell, J. M., Waite, J. H. Jr., et al. 2011. Titan's Thermospheric Response to Various Plasma Environments. J. Geophys. Res., 116(A), 03318.
Woods, T. N., Eparvier, F. G., Bailey, S. M., et al. 2005. Solar EUV Experiment (SEE): Mission Overview and First Results. J. Geophys. Res. (Space Physics), 110(A9), 1312. doi:10.1029/2004JA010765.
Yelle, R. V 1991. Non-LTE Models of Titan's Upper Atmosphere. Astrophys. J., 383(Dec.), 380–400. doi:10.1086/170796.
Yelle, R. V, and Miller, S. 2004. Jupiter: The Planet, Satellites and Magnetosphere – Google Books. Jupiter.
Yelle, R. V, Borggren, N., de La Haye, V, et al. 2006. The Vertical Structure of Titan's Upper Atmosphere from Cassini Ion Neutral Mass Spectrometer Measurements. Icarus, 182(June), 567–576. doi:10.1016/j.icarus.2005.10.029.
Yelle, R. V, Cui, J., and Müller-Wodarg, I. C. F., 2008. Methane Escape from Titan's Atmosphere. J. Geophys. Res., 113(E12), 10003. doi:10.1029/2007JE003031.
Yiğit, E., and Medvedev, A. S. 2009. Heating and Cooling of the Thermosphere by Internal Gravity Waves. Geophys. Res. Lett., 36(1), 14807.
Yung, Y. L., Allen, M., and Pinto, J. P. 1984. Photochemistry of the Atmosphere of Titan – Comparison between Model and Observations. Ap. J. Supp., 55(July), 465–506. doi:10.1086/190963.