Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T03:48:19.289Z Has data issue: false hasContentIssue false

6 - Storms, clouds, and weather

Published online by Cambridge University Press:  05 January 2014

C. A. Griffith
Affiliation:
University of Arizona
S. Rafkin
Affiliation:
Southwest Research Institute
P. Rannou
Affiliation:
Université de Reims Champagne-Ardenne
C. P. McKay
Affiliation:
NASA Ames Research Center
Ingo Müller-Wodarg
Affiliation:
Imperial College London
Caitlin A. Griffith
Affiliation:
University of Arizona
Emmanuel Lellouch
Affiliation:
Observatoire de Paris, Meudon
Thomas E. Cravens
Affiliation:
University of Kansas
Get access

Summary

6.1 Introduction

Titan appears alluringly familiar. Its surface is shaped by weather, with lakes, fluvial channels, and dunes (Tomasko et al., 2005; Lorenz et al., 2006; Stofan et al., 2007; Barnes et al., 2007; Lopes et al., 2010). Its atmosphere sports clouds that can grow to over four times the height of terrestrial thunderstorms (Griffith et al., 1998; Brown et al., 2002; Roe et al., 2002; Schaller et al., 2006a). These features result from an uncanny resemblance to Earth; similar to the terrestrial hydro-logical cycle, Titan has a methane cycle, with methane clouds, rain, and seas. On both Earth and Titan, the condensable is supplied by the surface; evaporates into the atmosphere, where it condenses into clouds; redistributes in the atmosphere; and precipitates back to the surface. These processes depend on the partitioning of solar insolation, the atmospheric structure and temperature, the condensable inventory and properties, and the circulation, all of which differ between Earth and Titan (Table 6.1).

On Earth, the equivalent of 2.7 km of water covers the surface and supplies the atmosphere with the equivalent of 2.6 cm of precipitable water. This largely wet surface (70% of the globe) is heated by, on average, 60 percent of the incident sunlight, which passes through the mostly transparent (when cloudless) atmosphere. Sunlight powers weather. Its effects are direct – for example, through the evaporation of surface liquids. In addition, there are indirect impacts – for example, through differential heating across the globe, which ultimately steers the general circulation of the planet, with conditions altered locally by the variable heating associated with surface topography, land-water contrast, and other terrain heterogeneities.

Type
Chapter
Information
Titan
Interior, Surface, Atmosphere, and Space Environment
, pp. 190 - 223
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ádámkovics, M., Barnes, J. W., Härtung, M., and de Pater, I. 2010. Observations of a Stationary Mid-Latitude Cloud System on Titan. Icarus, 208, 868–877. doi:10.1016/j.icarus.2010.03.006.Google Scholar
Aharonson, O., Hayes, A. G., Lunine, J. I., Lorenz, R. D., et al. 2009. An Asymmetric Distribution of Lakes on Titan as a Possible Consequence of Orbital Forcing. Nature Geoscience, 2, 851–854. doi:10.1038/ngeo698.Google Scholar
Atreya, S. K., Adams, E. Y., Niemann, H. B., Demick-Montelara, J. E., et al. 2006. Titan's Methane Cycle. Planet. Space Sci., 54, 1177–1187. doi:10.1016/j.pss.2006.05.028.Google Scholar
Awal, M., and Lunine, J. I. 1994. Moist Convective Clouds in Titan's Atmosphere. Geophys. Res. Lett., 21, 2491–2494. doi:10.1029/94GL01707.Google Scholar
Barnes, J. W., Brown, R. H., Soderblom, L., Buratti, B. J., et al. 2007. Global-Scale Surface Spectral Variations on Titan Seen from Cassini/VIMS. Icarus, 186, 242–258. doi:10.1016/j.icarus.2006.08.021.Google Scholar
Barnes, J. W., Bow, J., Schwartz, J., Brown, R. H., et al. 2011. Organic Sedimentary Deposits in Titan's Dry Lakebeds: Probable Evaporite. Icarus, 216, 136–140. doi:10.1016/j.icarus.2011.08.022.Google Scholar
Barth, E. L., and Rafkin, S. C. R., 2007. TRAMS: A New Dynamic Cloud Model for Titan's Methane Clouds. Geophys. Res. Lett., 34, L03203. doi:10.1029/2006GL028652.Google Scholar
Barth, E. L., and Rafkin, S. C. R., 2010. Convective Cloud Heights as a Diagnostic for Methane Environment on Titan. Icarus, 206, 467–484. doi:10.1016/j.icarus.2009.01.032.Google Scholar
Barth, E. L., and Toon, O. B. 2004. Properties of Methane Clouds on Titan: Results from Microphysical Modeling. Geophys. Res. Lett., 31, L17S07. doi:10.1029/2004GL019825.Google Scholar
Bouchez, A. H., and Brown, M. E. 2005. Statistics of Titan's South Polar Tropospheric Clouds. ApJ, 618(Jan.), L53–L56. doi:10.1086/427693.Google Scholar
Brown, M. E., Bouchez, A. H., and Griffith, C. A. 2002. Direct Detection of Variable Tropospheric Clouds near Titan's South Pole. Nature, 420, 795–797.Google Scholar
Brown, M. E., Smith, A. L., Chen, C., and Adamkovics, M. 2009a. Discovery of Fog at the South Pole of Titan. ApJ, 706, L110–L113. doi:10.1088/0004-637X/706/1/L110.Google Scholar
Brown, M. E., Schaller, E. L., Roe, H. G., Chen, C., et al. 2009b. Discovery of Lake-Effect Clouds on Titan. Geophys. Res. Lett., 36, L01103. doi:10.1029/2008GL035964.Google Scholar
Brown, M. E., Roberts, J. E., and Schaller, E. L. 2010. Clouds on Titan during the Cassini Prime Mission: A Complete Analysis of the VIMS Data. Icarus, 205, 571–580. doi:10.1016/j.icarus.2009.08.024.Google Scholar
Brown, R. H., Soderblom, L. A., Soderblom, J. M., Clark, R. N., et al. 2008. The Identification of Liquid Ethane in Titan's Ontario Lacus. Nature, 454, 607–610. doi:10.1038/nature07100.Google Scholar
Cassini Radar Team, Le Gall, A., Janssen, M. A., Wye, L. C., et al. 2011a. Cassini SAR, Radiometry, Scatterometry and Altimetry Observations of Titan's Dune Fields. Icarus, 213, 608–624. doi:10.1016/j.icarus.2011.03.026.Google Scholar
Cassini Radar Team, Hayes, A. G., Aharonson, O., Lunine, J. I., et al. 2011b. Transient Surface Liquid in Titan's Polar Regions from Cassini. Icarus, 211, 655–671. doi:10.1016/j.icarus.2010.08.017.Google Scholar
Chanover, N. J., Anderson, C. M., McKay, C. P., Rannou, P., et al. 2003. Probing Titan's Lower Atmosphere with Acousto-Optic Tuning. Icarus, 163, 150–163. doi:10.1016/S0019-1035(03)00075-7.Google Scholar
Charnay, B., and Lebonnois, S. 2012. Two Boundary Layers in Titan's Lower Troposphere Inferred from a Climate Model. Nature Geoscience, 5, 106–109. doi:10.1038/ngeo1374.Google Scholar
Clancy, R. T., Grossman, A. W., Wolff, M. J., James, P. B., et al. 1996. Water Vapor Saturation at Low Altitudes around Mars Aphelion: A Key to Mars Climate?Icarus, 122, 36–62. doi:10.1006/icar.1996.0108.Google Scholar
Courtin, R., Gautier, D., and McKay, C. P. 1995. Titan's Thermal Emission Spectrum: Reanalysis of the Voyager Infrared Measurements. Icarus, 114, 144–162. doi:10.1006/icar.1995.1050.Google Scholar
Coustenis, A., Schmitt, B., Khanna, R. K., and Trotta, F. 1999. Plausible Condensates in Titan's Stratosphere from Voyager Infrared Spectra. Planet. Space Sci., 47, 1305–1329. doi:10.1016/S0032-0633(99)00053-7.Google Scholar
de Bergh, C., Courtin, R., Bézard, B., Coustenis, A., et al. 2012. Applications of a New Set of Methane Line Parameters to the Modeling of Titan's Spectrum in the 1.58 μm Window. Planet. Space Sci., 61, 85–98. doi:10.1016/j.pss.2011.05.003.Google Scholar
Elachi, C., Wall, S., Allison, M., Anderson, Y., et al. 2005. Cassini Radar Views the Surface of Titan. Science, 308, 970–974. doi:10.1126/science.1109919.Google Scholar
Eshleman, V R., Lindal, G. F., and Tyler, G. L. 1983. Is Titan Wet or Dry?Science, 221, 53–55. doi:10.1126/science.221.4605.53.Google Scholar
Fischer, G., and Gurnett, D. A. 2011. The Search for Titan Lightning Radio Emissions. J. Geophys. Res. Let., 38, L08206. doi:10.1029/2011GL047316.Google Scholar
Flasar, F. M. 1998. The Dynamic Meteorology of Titan. Planet. Space Sci., 46, 1125–1147. doi:10.1016/S0032-0633(97)00223-7.Google Scholar
Flasar, F. M., Samuelson, R. E., and Conrath, B. J. 1981. Titan's Atmosphere – Temperature and Dynamics. Nature, 292, 693–698. doi:10.1038/292693a0.Google Scholar
Fulchignoni, M., Ferri, F., Angrilli, F., Ball, A. J., etal. 2005. In Situ Measurements of the Physical Characteristics of Titan's Environment. Nature, 438, 785–791. doi:10.1038/nature04314.Google Scholar
Gendron, E., Coustenis, A., Drossart, P., Combes, M., et al. 2004. VLT/NACO Adaptive Optics Imaging of Titan. Astronomy and Astrophysics, 417, L21–L24. doi:10.1051/0004-6361:20040027.Google Scholar
Gibbard, S. G., Macintosh, B., Gavel, D., Max, C. E., et al. 2004. Speckle Imaging of Titan at 2 Microns: Surface Albedo, Haze Optical Depth, and Tropospheric Clouds 1996-1998. Icarus, 169, 429–439. doi:10.1016/j.icarus.2003.12.026.Google Scholar
Graves, S. D. B., McKay, C. P., Griffith, C. A., Ferri, F., et al. 2008. Rain and Hail Can Reach the Surface of Titan. Planet. Space Sci., 56, 346–357. doi:10.1016/j.pss.2007.11.001.Google Scholar
Griffith, C. A. 1993. Evidence for Surface Heterogeneity on Titan. Nature, 364, 511–514. doi:10.1038/364511a0.Google Scholar
Griffith, C. A. 2009. Storms, Polar Deposits and the Methane Cycle in Titan's Atmosphere. Phil. Trans. R. Soc. A., 367, 713–728. doi:10.1098/rsta.2008.0245.Google Scholar
Griffith, C. A., Owen, T., Miller, G.A., and Geballe, T. 1998. Transient Clouds in Titan's Lower Atmosphere. Nature, 395, 575–578. doi:10.1038/26920.Google Scholar
Griffith, C. A., Penteado, P., Baines, K., Drossart, P., et al., 2005. The Evolution of Titan's Mid-Latitude Clouds. Science, 310, 474–477. doi:10.1126/science.1117702.Google Scholar
Griffith, C. A., Penteado, P., Rannou, P., Brown, R., et al. 2006. Evidence for a Polar Ethane Cloud on Titan. Science, 313, 1620–1622. doi:10.1126/science.1128245.Google Scholar
Griffith, C. A., McKay, C. P., and Ferri, F. 2008. Titan's Tropical Storms in an Evolving Atmosphere. Astrophys. J.l, 687, L41–L44. doi:10.1086/593117.Google Scholar
Griffith, C. A., Penteado, P., Rodriguez, S., Le Mouélic, S., et al. 2009. Characterization of Clouds in Titan's Tropical Atmosphere. ApJ, 702, L105–L109. doi:10.1088/0004-637X/702/2/L105.Google Scholar
Griffith, C. A., Lora, J. M., Turner, J., Penteado, P. F., et al. 2012a. Possible Tropical Lakes on Titan from Observations of Dark Terrain. Nature, 486(June), 237–239. doi:10.1038/nature11165.Google Scholar
Griffith, C. A., Doose, L., Tomasko, M. G., Penteado, P. F., et al. 2012b. Radiative Transfer Analyses of Titan's Tropical Atmosphere. Icarus, 218(Apr.), 975–988. doi:10.1016/j.icarus.2011.11.034.Google Scholar
Griffith, C.A., Hall, J. L., and Geballe, T. R. 2000. Detection of Daily Clouds on Titan. Science, 290, 509–513.Google Scholar
Haberle, R. M., McKay, C. P., Schaeffer, J., Cabrol, N. A., et al. 2001. On the Possibility of Liquid Water on Present-Day Mars. J. Geophys. Res., 106, 23317–23326. doi:10.1029/2000JE001360.Google Scholar
Hayes, A., Aharonson, O., Callahan, P., Elachi, C., et al. 2008. Hydrocarbon Lakes on Titan: Distribution and Interaction with a Porous Regolith. Geophys. Res. Let., 35, L09204. doi:10.1029/2008GL033409.Google Scholar
Hayes, A. G., Wolf, A. S., Aharonson, O., Zebker, H., et al. 2010. Bathymetry and Absorptivity of Titan's Ontario Lacus. J. Geophys. Res. (Planets), 115(E14), E09009. doi:10.1029/2009JE003557.Google Scholar
Hirtzig, M., Coustenis, A., Gendron, E., Drossart, P., et al. 2006. Monitoring Atmospheric Phenomena on Titan. Astron. Astrophys., 456, 761–774. doi:10.1051/0004-6361:20053381.Google Scholar
Hueso, R., and Sánchez-Lavega, A. 2006. Methane Storms on Saturn's moon Titan. Nature, 442, 428–431. doi:10.1038/nature04933.Google Scholar
Jennings, D. E., Flasar, F. M., Kunde, V. G., Samuelson, R. E., et al. 2009. Titan's Surface Brightness Temperatures. ApJ, 691, L103–L105. doi:10.1088/0004-637X/691/2/L103.Google Scholar
Jennings, D. E., Cottini, V., Nixon, C. A., Flasar, F. M., etal. 2011. Seasonal Changes in Titan's Surface Temperatures. ApJ, 737, L15. doi:10.1088/2041-8205/ 737/1/L15.Google Scholar
Langhans, M. H., Jaumann, R., Stephan, K., Brown, R. H., et al. 2012. Titan's Fluvial Valleys: Morphology, Distribution, and Spectral Properties. 60, 34–51. doi:10.1016/j.pss.2011.01.020.
Lavvas, P., Griffith, C. A., and Yelle, R. V 2011. Condensation in Titan's Atmosphere at the Huygens Landing Site. Icarus, 215, 732–750. doi:10.1016/j.icarus.2011.06.040.Google Scholar
Le Mouélic, S., Rannou, P., Rodriguez, S., Sotin, C., et al. 2012. Dissipation of Titan's North Polar Cloud at Northern Spring Equinox. Planet. Space Sci., 60, 86–92. doi:10.1016/j.pss.2011.04.006.Google Scholar
Lemmon, M. T., Karkoschka, E., and Tomasko, M. 1993. Titan's Rotation – Surface Feature Observed. Icarus, 103, 329–332. doi:10.1006/icar.1993.1074.Google Scholar
Leovy, C. B. 1969. Mars: Theoretical Aspects of Meteorology. Aplied Optics, 8, 1279–1286. doi:10.1364/AO.8.001279.Google Scholar
Li, L.Nixon, C. A., Achterberg, R. K., Smith, M. A., etal. 2011. The Global Energy Balance of Titan. Geophys. Res. Lett., 38, L23201. doi:10.1029/2011GL050053.Google Scholar
Lindal, G. F., Wood, G. E., Hotz, H. B., Sweetnam, D. N., etal. 1983. The Atmosphere of Titan-An Analysis of the Voyager 1 Radio Occultation Measurements. Icarus, 53, 348–363. doi:10.1016/0019-1035(83)90155-0.Google Scholar
Lopes, R. M. C., Stofan, E. R., Peckyno, R., Radebaugh, J., et al. Soderblom, L. and Cassini RADAR Team. 2010. Distribution and Interplay of Geologic Processes on Titan from Cassini Radar Data. Icarus, 205, 540–558. doi:10.1016/j.icarus.2009.08.010.Google Scholar
Lora, J. M., Goodman, P. J., Russell, J. L., and Lunine, J. I. 2011. Insolation in Titan's Troposphere. Icarus, 216, 116–119. doi:10.1016/j.icarus.2011.08.017.Google Scholar
Lorenz, R. D., Griffith, C. A., Lunine, J. I., McKay, C. P., et al. 2005. Convective Plumes and the Scarcity of Titan's Clouds. Geophys. Res. Lett., 32, 1201-+. doi:10.1029/2004GL021415.Google Scholar
Lorenz, R. D., Wall, S., Radebaugh, J., Boubin, G., et al. 2006. The Sand Seas of Titan: Cassini RADAR Observations of Longitudinal Dunes. Science, 312, 724–727. doi:10.1126/science.1123257.Google Scholar
Lorenz, R. D., Mitchell, K. L., Kirk, R. L., Hayes, A. G., et al. 2008. Titan's Inventory of Organic Surface Materials. Geophys. Res. Lett., 35, L02206. doi:10.1029/2007GL032118.Google Scholar
Lunine, J. I., Stevenson, D. J., and Yung, Y. L. 1983. Ethane Ocean on Titan. Science, 222, 1229–1230. doi:10.1126/science.222.4629.1229.Google Scholar
Mayo, L. A., and Samuelson, R. E. 2005. Condensate Clouds in Titan's North Polar Stratosphere. Icarus, 176, 316–330. doi:10.1016/j.icarus.2005.01.020.Google Scholar
McKay, C. P. 1996. Elemental Composition, Solubility, and Optical Properties of Titan's Organic Haze. Planet. Space Sci., 44, 741–747. doi:10.1016/0032-0633(96)00009-8.Google Scholar
McKay, C. P., Pollack, J. B., and Courtin, R. 1989. The Thermal Structure of Titan's Atmosphere. Icarus, 80, 23–53. doi:10.1016/0019-1035(89)90160-7.Google Scholar
McKay, C. P., Pollack, J. B., and Courtin, R. 1991. The Greenhouse and Antigreenhouse Effects on Titan. Science, 253, 1118–1121. doi:10.1126/science.253.5024.1118.Google Scholar
McKay, C. P., Martin, S. C., Griffith, C. A., and Keller, R. M. 1997. Temperature Lapse Rate and Methane in Titan's Troposphere. Icarus, 129, 498–505. doi:10.1006/icar.1997.5751.Google Scholar
McKay, C. P., Griffith, C. A., Ferri, F., and Fulchignoni, M. 2009. Comparing Methane and Temperature Profiles on Titan in 1980 and 2005. Planetary Space Sci., 57, 1996–2000. doi:10.1016/j.pss.2009.08.008.Google Scholar
Mitchell, J. L. 2008. The Drying of Titan's Dunes: Titan's Methane Hydrology and Its Impact on Atmospheric Circulation. J. Geophys. Res. (Planets), 113(E12), E08015. doi:10.1029/2007JE003017.Google Scholar
Mitchell, J. L. 2012. Titan's Transport-Driven Methane Cycle. Astrophys. J. Letts., 756, L26–L30. doi:10.1088/2041-8205/756/2/L26.Google Scholar
Mitchell, J. L., Pierrehumbert, R. T., Frierson, D. M. W., and Caballero, R. 2006. The Dynamics behind Titan's Methane Clouds. PNAS, 103, 18421–18426. doi:10.1038/nature04948.Google Scholar
Mitchell, J. L., Pierrehumbert, R. T., Frierson, D. M. W., and Caballero, R. 2009. The Impact of Methane Thermodynamics on Seasonal Convection and Circulation in a Model Titan Atmosphere. Icarus, 203, 250–264. doi:10.1016/j.icarus.2009.03.043.Google Scholar
Mitchell, J. L., Adamkovics, M., Caballero, R., and Turtle, E. P. 2011. Locally Enhanced Precipitation Organized by Planetary-Scale Waves on Titan. Nature Geoscience, 4, 589–592. doi:10.1038/ngeo1219.Google Scholar
Mitri, G., Showman, A. P., Lunine, J. I., and Lorenz, R. D. 2007. Hydrocarbon Lakes on Titan. Icarus, 186, 385–394. doi:10.1016/j.icarus.2006.09.004.Google Scholar
Montmessin, F. 2006. The Orbital Forcing of Climate Changes on Mars. Space Sci. Rev., 125, 457–472. doi:10.1007/s11214-006-9078-x.Google Scholar
Montmessin, F., Forget, F., Rannou, P., Cabane, M., etal. 2004. Origin and Role of Water Ice Clouds in the Martian Water Cycle as Inferred from a General Circulation Model. J. Geophys. Res. (Planets), 109(E18), E10004. doi:10.1029/2004JE002284.Google Scholar
Neish, C. D. and Lorenz, R. D. 2012. Titan's Global Crater Population: A New Assessment. Planetary and Space Science, 60, 26–33. doi:10.1016/j.pss.2011.02.016.Google Scholar
Niemann, H. B., Atreya, S. K., Bauer, S. J., Carignan, G. R., etal. 2005. The Abundances of Constituents of Titan's Atmosphere from the GCMS Instrument on the Huygens Probe. Nature, 438, 779–784. doi:10.1038/nature04122.Google Scholar
Niemann, H. B., Atreya, S. K., Demick, J. E., Gautier, D., et al. 2010. Composition of Titan's Lower Atmosphere and Simple Surface Volatiles as Measured by the Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer Experiment. J. Geophys. Res. (Planets), 115(E14), E12006. doi:10.1029/2010JE003659.Google Scholar
Penteado, P. F., and Griffith, C. A. 2010. Ground-Based Measurements of the Methane Distribution on Titan. Icarus, 206, 345–351. doi:10.1016/j.icarus. 2009.08.022.Google Scholar
Perron, J. T., Lamb, M. P., Koven, C. D., Fung, I. Y., et al. 2006. Valley Formation and Methane Precipitation Rates on Titan. J. Geophys. Res. (Planets), 111(E10), E11001. doi:10.1029/2005JE002602.Google Scholar
Porco, C. C., Baker, E., Barbara, J., Beurle, K., et al. 2005. Imaging of Titan from the Cassini Spacecraft. Nature, 434, 159–168. doi:10.1038/nature03436.Google Scholar
Radebaugh, J., Lorenz, R. D., Lunine, J. I., et al. and the Cassini Radar Team. 2008. Dunes on Titan Observed by Cassini Radar. Icarus, 194, 690–703. doi:10.1016/j.icarus.2007.10.015.Google Scholar
Rannou, P., McKay, C. P., and Lorenz, R. D. 2003. A Model of Titan's Haze of Fractal Aerosols Constrained by Multiple Observations. Planet. Space Sci., 51, 963–976. doi:10.1016/j.pss.2003.05.008.Google Scholar
Rannou, P., Montmessin, F., Hourdin, F., and Lebonnois, S. 2006. The Latitudinal Distribution of Clouds on Titan. Science, 311, 201–205. doi:10.1126/science.1118424.Google Scholar
Rannou, P., Le Mouélic, S., Sotin, C., and Brown, R. H. 2012. Cloud and Haze in the Winter Polar Region of Titan Observed with Visual and Infrared Mapping Spectrometer on Board Cassini. ApJ, 748, 4. doi:10.1088/0004-637X/748/1/4.Google Scholar
Rennó, N. O., Bos, B. J., Catling, D., Clark, et al. 2009. Possible Physical and Thermodynamical Evidence for Liquid Water at the Phoenix Landing Site. J. Geophys. Res., 114(C13), E00E03. doi:10.1029/2009JE003362.Google Scholar
Richardson, M. I., and Wilson, R. J. 2002a. A Topographically Forced Asymmetry in the Martian Circulation and Climate. Nature, 416, 298–301.Google Scholar
Richardson, M. I., and Wilson, R. J. 2002b. Investigation of the Nature and Stability of the Martian Seasonal Water Cycle with a General Circulation Model. J. Geophys. Res. (Planets), 107, 5031. doi:10.1029/2001JE001536.Google Scholar
Richardson, M. I., Wilson, R. J., and Rodin, A. V 2002. Water Ice Clouds in the Martian Atmosphere: General Circulation Model Experiments with a Simple Cloud Scheme. J. Geophys. Res. (Planets), 107, 5064. doi:10.1029/2001JE001804.Google Scholar
Rodriguez, S., Le Mouélic, S., Rannou, P., Tobie, G., et al. 2009. Global Circulation as the Main Source of Cloud Activity on Titan. Nature, 459, 678–682. doi:10.1038/nature08014.Google Scholar
Rodriguez, S., Le Mouélic, S., Rannou, P., Sotin, C., et al. 2011. Titan's Cloud Seasonal Activity from Winter to Spring with Cassini/VIMS. Icarus, 216, 89–110. doi:10.1016/j.icarus.2011.07.031.Google Scholar
Roe, H. G., de Pater, I., Macintosh, B. A., and McKay, C. P. 2002. Titan's Clouds from Gemini and Keck Adaptive Optics Imaging. Astrophys. J., 581, 1399–1406. doi:10.1086/344403.Google Scholar
Roe, H. G., Bouchez, A. H., Trujillo, C. A., Schaller, E. L., et al. 2005. Discovery of Temperate Latitude Clouds on Titan. Astrophys. J. Lett., 618, L49–L52. doi:10.1086/427499.Google Scholar
Sagan, C., and Thompson, W. R. 1984. Production and Condensation of Organic Gases in the Atmosphere of Titan. Icarus, 59, 133–161. doi:10.1016/0019-1035(84)90018-6.Google Scholar
Samuelson, R. E. 1983. Radiative Equilibrium Model of Titan's Atmosphere. Icarus, 53, 364–387. doi:10.1016/0019-1035(83)90156-2.Google Scholar
Samuelson, R. E., Hanel, R. A., Kunde, V. G., and Maguire, W. C. 1981. Mean Molecular Weightand Hydrogen Abundance of Titan's Atmosphere. Nature, 292, 688–693.Google Scholar
Samuelson, R. E., Nath, N. R., and Borysow, A. 1997. Gaseous Abundances and Methane Supersaturation in Titan's Troposphere. Planet. Space Sci., 45, 959–980.Google Scholar
Schaller, E. L., Brown, M. E., Roe, H. G., and Bouchez, A. H. 2006a. A Large Cloud Outburst at Titan's South Pole. Icarus, 182, 224–229. doi:10.1016/j.icarus.2005.12.021.Google Scholar
Schaller, E. L., Brown, M. E., Roe, H. G., Bouchez, A. H., et al. 2006b. Dissipation of Titan's South Polar Clouds. Icarus, 184, 517–523. doi:10.1016/j.icarus. 2006.05.025.Google Scholar
Schaller, E. L., Roe, H. G., Schneider, T., and Brown, M. E. 2009. Storms in the Tropics of Titan. Nature, 460, 873–875. doi:10.1038/nature08193.Google Scholar
Schinder, P. J., Flasar, F. M., Marouf, E. A., French, R. G., etal. 2011. The Structure of Titan's Atmosphere from Cassini Radio Occultations. Icarus, 215, 460–474. doi:10.1016/j.icarus.2011.07.030.Google Scholar
Schinder, P. J., et al. 2012. The Structure of Titan's Atmosphere from Cassini Radio Occultations: Occultations from the Prime and Equinox Missions. Icarus, 221, 1020–1031.Google Scholar
Schneider, T., Graves, S. D. B., Schaller, E. L., and Brown, M. E. 2012. Polar Methane Accumulation and Rainstorms on Titan from Simulations of the Methane Cycle. Nature, 481, 58–61. doi:10.1038/nature10666.Google Scholar
Smith, M. D. 2009. THEMIS Observations of Mars Aerosol Optical Depth from 2002-2008. Icarus, 202, 444–452. doi:10.1016/j.icarus.2009.03.027.Google Scholar
Smith, M. D., Wolff, M. J., Clancy, R. T., and Murchie, S. L. 2009. Compact Reconnaissance Imaging Spectrometer Observations of Water Vapor and Carbon Monoxide. J. Geophys. Res. (Planets), 114(E13), E00D03. doi:10.1029/2008JE003288.Google Scholar
Soderblom, L. A., Kirk, R. L., Lunine, J. I., Anderson, J. A., et al. 2007a. Correlations between Cassini VIMS Spectra and RADAR SAR Images: Implications for Titan's Surface Composition and the Character of the Huygens Probe Landing Site. Planet. Space Sci., 55, 2025–2036. doi:10.1016/j.pss.2007.04.014.Google Scholar
Soderblom, L. A., Tomasko, M. G., Archinal, B. A., Becker, T. L., et al. 2007b. Topography and Geomorphology of the Huygens Landing Site on Titan. Planet. Space Sci., 55, 2015–2024. doi:10.1016/j.pss.2007.04.015.Google Scholar
Stofan, E. R., Elachi, C., Lunine, J. I., Lorenz, R. D., et al. 2007. The Lakes of Titan. Nature, 445, 61–64. doi:10.1038/nature05438.Google Scholar
Strobel, D. F. 1982. Chemistry and Evolution of Titan's Atmosphere. Planet. Space Sci., 30, 839–848. doi:10.1016/0032-0633(82)90116-7.Google Scholar
Strobel, D. F. 2009. Titan's Hydrodynamically Escaping Atmosphere: Escape Rates and the Structure of the Exobase Region. Icarus, 202, 632–641. doi:10.1016/j.icarus.2009.03.007.Google Scholar
Thompson, W. R., Henry, T. J., Schwartz, J. M., Khare, B. N., et al. 1991. Plasma Discharge in N2 + CH4 at Low Pressures – Experimental Results and Applications to Titan. Icarus, 90, 57–73. doi:10.1016/0019-1035(91)90068-5.Google Scholar
Thompson, W. R., Zollweg, J. A., and Gabis, D. H. 1992. Vapor-Liquid Equilibrium Thermodynamics of N2 + CH4 – Model and Titan Applications. Icarus, 97, 187–199. doi:10.1016/0019-1035(92)90127-S.Google Scholar
Tobie, G., Grasset, O., Lunine, J. I., Mocquet, A., et al. 2005. Titan's Internal Structure Inferred from a Coupled Thermal-Orbital Model. Icarus, 175, 496–502. doi:10.1016/j.icarus.2004.12.007.Google Scholar
Tokano, T. 2005. Meteorological Assessment of the Surface Temperatures on Titan: Constraints on the Surface Type. Icarus, 173, 222–242. doi:10.1016/j.icarus.2004.08.019.Google Scholar
Tokano, T. 2009. Impact of Seas/Lakes on Polar Meteorology of Titan: Simulation by a Coupled GCM-Sea Model. Icarus, 204, 619–636. doi:10.1016/j.icarus.2009.07.032.Google Scholar
Tokano, T., Neubauer, F. M., Laube, M., and McKay, C. P. 2001. Three-Dimensional Modeling of the Tropospheric Methane Cycle on Titan. Icarus, 153, 130–147. doi:10.1006/icar.2001.6659.Google Scholar
Tokano, T., McKay, C. P., Neubauer, F. M., Atreya, S. K., et al. 2006a. Methane drizzle on Titan. Nature, 442, 432–435. doi:10.1038/nature04948.Google Scholar
Tokano, T., Ferri, F., Colombatti, G., Mäkinen, T., et al. 2006b. Titan's Planetary Boundary Layer Structure at the Huygens Landing Site. J. Geophys. Res. (Planets), 111(E10), E08007. doi:10.1029/2006JE002704.Google Scholar
Tomasko, M. G., Lemmon, M., Doose, R. L., Smith, P. H., et al. 1997. Models of the Penetration of Sunlight Into the Atmosphere of Titan. ESA SP-1177, 1177, 345–358.Google Scholar
Tomasko, M. G., Archinal, B., Becker, T., Bézard, B., et al. 2005. Rain, Winds and Haze During the Huygens Probe's Descent to Titan's Surface. Nature, 438, 765–778. doi:10.1038/nature04126.Google Scholar
Tomasko, M. G., Bézard, B., Doose, L., Engel, S., et al. 2008. Measurements of Methane Absorption by the Descent Imager/Spectral Radiometer (DISR) during its Descent through Titan's Atmosphere. Planet. Space Sci., 56, 624–647. doi:10.1016/ j.pss.2007.10.009.Google Scholar
Toon, O. B., McKay, C. P., Courtin, R., and Ackerman, T. P. 1988. Methane Rain on Titan. Icarus, 75, 255–284. doi:10.1016/0019-1035(88)90005-X.Google Scholar
Toon, O. B., McKay, C. P., Griffith, C. A., and Turco, R. P. 1992. A Physical Model of Titan's Aerosols. Icarus, 95, 24–53. doi:10.1016/0019-1035(92)90188-D.Google Scholar
Turtle, E. P., Perry, J. E., McEwen, A. S., DelGenio, A. D., et al. 2009. Cassini Imaging of Titan's High-Latitude Lakes, Clouds, and South-Polar Surface Changes. Geophys. Res. Lett., 36, L02204. doi:10.1029/2008GL036186.Google Scholar
Turtle, E. P., Perry, J. E., Hayes, A. G., Lorenz, R. D., etal. 2011a. Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers. Science, 331, 1414–1417. doi:10.1126/science.1201063.Google Scholar
Turtle, E. P., Perry, J. E., Hayes, A. G., and McEwen, A. S. 2011b. Shoreline Retreat at Titan's Ontario Lacus and Arrakis Planitia from Cassini Imaging Science Subsystem Observations. Icarus, 212, 957–959. doi:10.1016/j.icarus.2011.02.005.Google Scholar
Williams, K. E., McKay, C. P., and Persson, F. 2012. The Surface Energy Balance at the Huygens Landing Site and the Moist Surface Conditions on Titan. Planet. Space Sci., 60, 376–385. doi:10.1016/j.pss.2011.11.005.Google Scholar
Young, E. F., Rannou, P., McKay, C. P., Griffith, C. A., et al. 2002. A Three-Dimensional Map of Titan's Tropospheric Haze Distribution Based on Hubble Space Telescope Imaging. Ap.J., 123, 3473–3486. doi:10.1086/339826.Google Scholar
Yung, Y. L., Allen, M., and Pinto, J. P. 1984. Photochemistry of the Atmosphere of Titan – Comparison between Model and Observations. Astrophys. J. Suppl. Ser., 55, 465–506. doi:10.1086/190963.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×