Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T20:37:01.719Z Has data issue: false hasContentIssue false

5 - The composition of Titan's atmosphere

Published online by Cambridge University Press:  05 January 2014

B. Bézard
Affiliation:
LESIA, Observatoire de Paris, Section de Meudon
R. V. Yelle
Affiliation:
University of Arizona
C. A. Nixon
Affiliation:
University of Martland
Ingo Müller-Wodarg
Affiliation:
Imperial College London
Caitlin A. Griffith
Affiliation:
University of Arizona
Emmanuel Lellouch
Affiliation:
Observatoire de Paris, Meudon
Thomas E. Cravens
Affiliation:
University of Kansas
Get access

Summary

5.1 Introduction

Titan's atmosphere harbors a suite of hydrocarbons and nitrogen-bearing compounds formed from the dissociation of the two main species, nitrogen (N2)and methane (CH4). It also contains oxygen compounds, likely produced from an influx of water and/or oxygen. The mixing ratios of these photochemical species vary with altitude, latitude, and time as a consequence of various chemical sources and sinks and of the atmospheric transport that redistributes them both vertically and horizontally. It is important to characterize and monitor the distribution of these chemical species because they play an important role in the radiative budget and provide insight into the seasonally varying atmospheric circulation. They can also help us understand the complex chemistry at work in Titan's atmosphere, leading to the formation of thick haze layers, which in turn affect the heat balance and general circulation. This chapter reviews the neutral composition of Titan's atmosphere, from the troposphere up to the thermosphere (~ 1400 km), and its vertical, horizontal, and temporal variations. These topics are interwoven with the origin and evolution, the general circulation, the clouds and weather, and the atmospheric chemistry of Titan that are the subjects of Chapters 1, 4, 6, and 7.

5.1.1 Historical perspective

The first unquestionable evidence for an atmosphere on Titan was the discovery of several absorption bands of methane in near-infrared spectra of the satellite (Kuiper, 1944). But it was not until the 1970s that Titan became an object of intense study.

Type
Chapter
Information
Titan
Interior, Surface, Atmosphere, and Space Environment
, pp. 158 - 189
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, M. M., Kandadi, H., Le Clair, A., Achterberg, R. K., et al. 2010. D/H Ratio of Titan from Observations of the Cassini/Composite Infrared Spectrometer. ApJ, 708, 342–353. doi:10.1088/0004-637X/708/1/342.Google Scholar
Bell, J. M., Bougher, S. W., Waite, J. H., Ridley, A. J., et al. 2010. Simulating the One-Dimensional Structure of Titan's Upper Atmosphere: 1. Formulation of the Titan Global Ionosphere-Thermosphere Model and Benchmark Simulations. J. Geophys. Res., 115, E12002. doi:10.1029/2010JE003636.Google Scholar
Bézard, B. 2009. Composition and Chemistry of Titan's Stratosphere. Phil. Trans. R. Soc. A, 367, 683–695. doi:10.1098/rsta.2008.0186.Google Scholar
Bézard, B., Marten, A., and Paubert, G. 1993. Detection of Acetonitrile on Titan. BAAS, 25, 1100.Google Scholar
Bézard, B., Nixon, C. A., Kleiner, I., and Jennings, D. E. 2007. Detection of 13CH3D on Titan. Icarus, 191, 397–400. doi:10.1016/j.icarus.2007.06.004.Google Scholar
Brinton, H. C., Taylor, H. A., Niemann, H. B., Mayr, H. G., et al. 1980. Venus Nighttime Hydrogen Bulge. Geophys. Res. Lett., 7, 865–868. doi:10.1029/ GL007i011p00865.Google Scholar
Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., Holberg, J. B., et al. 1981. Extreme Ultraviolet Observations from Voyager 1 Encounter with Saturn. Science, 212, 206–211. doi:10.1126/science.212.4491.206.Google Scholar
Carrasco, N., Dutuit, O., Thissen, R., Banaszkiewicz, M., et al. 2007. Uncertainty Analysis of Bimolecular Reactions in Titan Ionosphere Chemistry Model. Planet. Space Sci., 55, 141–157. doi:10.1016/j.pss.2006.06.004.Google Scholar
Carrasco, N., Alcaraz, C., Dutuit, O., Plessis, S., et al. 2008. Sensitivity of a Titan Ionospheric Model to the Ion-Molecule Reaction Parameters. Planet. Space Sci., 56, 1644–1657. doi:10.1016/j.pss.2008.04.007.Google Scholar
Cordier, D., Mousis, O., Lunine, J. I., Moudens, A., et al. 2008. Photochemical Enrichment of Deuterium in Titan's Atmosphere: New Insights from Cassini-Huygens. ApJ, 689, L61–L64. doi:10.1086/595677.Google Scholar
Cordier, D., Mousis, O., Lunine, J. I., Lebonnois, S., et al. 2010. About the Possible Role of Hydrocarbon Lakes in the Origin of Titan's Noble Gas Atmospheric Depletion. ApJ, 721, L117–L120. doi:10.1088/2041-8205/721/2/L117.Google Scholar
Cottini, V., Nixon, C. A., Jennings, D. E., Anderson, C. M., et al. 2012. Water Vapor in Titan's Stratosphere from Cassini CIRS Far-Infrared Spectra. Icarus, 220, 855–862. doi:10.1016/j.icarus.2012.06.014.Google Scholar
Courtin, R., Gautier, D., and McKay, C. P. 1995. Titan's Thermal Emission Spectrum: Reanalysis of the Voyager Infrared Measurements. Icarus, 114, 144–162. doi:10.1006/icar.1995.1050.Google Scholar
Courtin, R., Sim, C. K., Kim, S. J., and Gautier, D. 2012. The Abundance of H2 in Titan's Troposphere from the Cassini CIRS Investigation. Planet. Space Sci., 69, 89–99. doi:10.1016/j.pss.2012.03.012.Google Scholar
Courtin, R., Swinyard, B. M., Moreno, R., Fulton, T., et al. 2011. First Results of Herschel-SPIRE Observations of Titan. A&A, 536, L2. doi:10.1051/0004-6361/201118304.Google Scholar
Coustenis, A., and Bézard, B. 1995. Titan's Atmosphere from Voyager Infrared Observations. IV. Latitudinal Variations of Temperature and Composition. Icarus, 115, 126–140. doi:10.1006/icar.1995.1084.Google Scholar
Coustenis, A., Salama, A., Lellouch, E., Encrenaz, T. et al. 1998. Evidence for Water Vapor in Titan's Atmosphere from ISO/SWS Data. A&A, 336, L85–L89.Google Scholar
Coustenis, A., Salama, A., Schulz, B., Ott, S., et al. 2003. Titan's Atmosphere from ISO Mid-Infrared Spectroscopy. Icarus, 161, 383–403. doi:10.1016/S0019-1035(02)00028-3.Google Scholar
Coustenis, A., Achterberg, R. K., Conrath, B. J., Jennings, D. E., et al. 2007. The Composition of Titan's Stratosphere from Cassini/CIRS Mid-Infrared Spectra. Icarus, 189, 35–62. doi:10.1016/j.icarus.2006.12.022.Google Scholar
Coustenis, A., Jennings, D. E., Jolly, A., Benilan, Y., et al. 2008. Detection of C2HD and the D/H Ratio on Titan. Icarus, 197, 539–548. doi:10.1016/ j.icarus.2008.06.003.Google Scholar
Coustenis, A., Atreya, S. K., Balint, T., Brown, R. H., et al. 2009. Tand EM: Titan and Enceladus Mission. Exp Astron, 23, 893–946. doi:10.1007/s10686-008-9103-z.Google Scholar
Coustenis, A., Jennings, D. E., Nixon, C. A., Achterberg, R. K., et al. 2010. Titan Trace Gaseous Composition from CIRS at the End of the Cassini-Huygens Prime Mission. Icarus, 207, 461–476. doi:10.1016/j.icarus.2009.11.027.Google Scholar
Cravens, T. E., Robertson, I. P., Clark, J., Wahlund, J.-E., et al. 2005. Titan's Ionosphere: Model Comparisons with Cassini Ta Data. Geophys. Res. Lett., 32, 12108–12111. doi:10.1029/2005GL023249.Google Scholar
Crespin, A., Lebonnois, S., Vinatier, S., Bézard, B., et al. 2008. Diagnostics of Titan's Stratospheric Dynamics Using Cassini/CIRS Data and the 2-Dimensional IPSL Circulation Model. Icarus, 197, 556–571. doi:10.1016/j.icarus.2008.05.010.Google Scholar
Cui, J., Yelle, R. V, Vuitton, V, Waite, J. H., et al. 2009. Analysis of Titan's Neutral Upper Atmosphere from Cassini Ion Neutral Mass Spectrometer Measurements. Icarus, 200, 581–615. doi:10.1016/j.icarus.2008.12.005.Google Scholar
de Bergh, C., Courtin, R., Bézard, B., Coustenis, A., et al. 2012. Applications of a New Set of Methane Line Parameters to the Modeling of Titan's Spectrum in the 1.58 μm Window. Planet. Space Sci., 61, 85–98. doi:10.1016/j.pss.2011.05.003.Google Scholar
de Kok, R., Irwin, P. G. J., Teanby, N. A., Lellouch, E., et al. 2007. Oxygen Compounds in Titan's Stratosphere as Observed by Cassini CIRS. Icarus, 186, 354–363. doi:10.1016/j.icarus.2006.09.016.Google Scholar
Esposito, L. W., Barth, C. A., Colwell, J. E., Lawrence, G. M., et al. 2004. The Cassini Ultraviolet Imaging Spectrograph Investigation. Space Sci. Rev., 115, 299–361. doi:10.1007/s11214-004-1455-8.Google Scholar
Flasar, F. M., Kunde, V. G., Abbas, M. M., Achterberg, R. K., et al. 2004. Exploring the Saturn System in the Thermal Infrared: The Composite Infrared Spectrometer. Space Sci. Rev., 115, 169–297. doi:10.1007/s11214-004-1454-9.Google Scholar
Flasar, F. M., Achterberg, R. K., Conrath, B. J., Gierasch, P. J., et al. 2005. Titan's Atmospheric Temperatures, Winds, and Composition. Science, 308, 975–978. doi:10.1126/science.1111150.Google Scholar
Fletcher, L. N., Orton, G. S., Teanby, N. A., Irwin, P. G. J., et al. 2009. Methane and Its Isotopologues on Saturn from Cassini/CIRS Observations. Icarus, 199, 351–367. doi:10.1016/j.icarus.2008.09.019.Google Scholar
Fox, J. L., and Yelle, R. V 1997. Hydrocarbon Ions in the Ionosphere of Titan. Geophys. Res. Lett., 24, 2179–2182. doi:10.1029/97GL02051.Google Scholar
Fulchignoni, M., Ferri, F., Angrilli, F., Ball, A. J., etal. 2005. In Situ Measurements of the Physical Characteristics of Titan's Environment. Nature, 438, 785–791. doi:10.1038/nature04314.Google Scholar
Gillett, F. C. 1975. Further Observations of the 8-13 Micron Spectrum of Titan. ApJ, 201, L41–L43. doi:10.1086/181937.Google Scholar
Gillett, F. C., Forrest, W. J., and Merrill, K. M. 1973. 8-13 Micron Observations of Titan. ApJ, 184, L93–L95. doi:10.1086/181296.Google Scholar
Griffith, C. A., McKay, C. P., and Ferri, F. 2008. Titan's Tropical Storms in an Evolving Atmosphere. ApJ, 687, L41-L44. doi:10.1086/593117.Google Scholar
Gurwell, M. A. 2004. Submillimeter Observations of Titan: Global Measures of Stratospheric Temperature, CO, HCN, HC3N, and the Isotopic Ratios 12C/13C and 14N/15N. ApJ, 616, L7–L10. doi:10.1086/423954.Google Scholar
Gurwell, M. A., and Muhleman, D. O. 2000. Note: CO on Titan: More Evidence for a Well-Mixed Vertical Profile. Icarus, 145, 653–656. doi:10.1006/icar.2000.6424.Google Scholar
Gurwell, M. A., Moreno, R., Moullet, A., and Butler, B. 2011. Titan's Stratosphere: Isotopic Ratios in CO and HCN. EPSC Abstracts, 6, EPSC-DPS2011-270-1.Google Scholar
Hanel, R., Conrath, B., Flasar, F. M., Kunde, V, et al. 1981. Infrared Observations of the Saturnian System from Voyager 1. Science, 212, 192–200. doi:10.1126/ science.212.4491.192.Google Scholar
Hartle, R. E., Sittler, E. C., Neubauer, F. M., Johnson, R. E., et al. 2006. Preliminary Interpretation of Titan Plasma Interaction as Observed by the Cassini Plasma Spectrometer: Comparisons with Voyager 1. Geophys. Res. Lett., 33, L08201. doi:10.1029/2005GL024817.Google Scholar
Hébrard, E., Dobrijevic, M., Pernot, P., Carrasco, N., et al. 2009. How Measurements of Rate Coefficients at Low Temperature Increase the Predictivity of Photochemical Models of Titan's Atmosphere. J. Phys. Chem. A, 113, 11227–11237. doi:10.1021/jp905524e.Google Scholar
Hörst, S. M., Vuitton, V, and Yelle, R. V 2008. Origin of Oxygen Species in Titan's Atmosphere. J. Geophys. Res., 113, E10006. doi:10.1029/2008JE003135.Google Scholar
Jacquemart, D., Lellouch, E., Bézard, B., de Bergh, C., et al. 2008. New Laboratory Measurements of CH4 in Titan's Conditions and a Reanalysis of the DISR Near-Surface Spectra at the Huygens Landing Site. Planet. Space Sci., 56, 613–623. doi:10.1016/j.pss.2007.10.008.Google Scholar
Jennings, D. E., Nixon, C. A., Jolly, A., Bézard, B., et al. 2008. Isotopic Ratios in Titan's Atmosphere from Cassini CIRS Limb Sounding: HC3N in the North. ApJ, 681, L109–L111. doi:10.1086/590534.Google Scholar
Jennings, D. E., Romani, P. N., Bjoraker, G. L., Sada, P. V., et al. 2009. 12C/13 C Ratio in Ethane on Titan and Implications for Methane's Replenishment. J. Phys. Chem. A, 113, 11101–11106. doi:10.1021/jp903637d.Google Scholar
Jolly, A., Fayt, A., Benilan, Y., Jacquemart, D., et al. 2010. The v8 Bending Mode of Diacetylene: From Laboratory Spectroscopy to the Detection of13C Isotopologues in Titan's Atmosphere. ApJ, 714, 852–859. doi:10.1088/0004-637X/714/1/852.Google Scholar
Khare, B. N., Sagan, C., Arakawa, E. T., Suits, F., et al. 1984. Optical Constants of Organic Tholins Produced in a Simulated Titanian Atmosphere – From Soft X-ray to Microwave Frequencies. Icarus, 60, 127–137. doi:10.1016/0019-1035(84)90142-8.Google Scholar
Koskinen, T. T., Yelle, R. V., Snowden, D. S., Lavvas, P., et al. 2011. The Mesosphere and Lower Thermosphere of Titan Revealed by Cassini/UVIS Stellar Occultations. Icarus, 216, 507–534. doi:10.1016/j.icarus.2011.09.022.Google Scholar
Krasnopolsky, V. A. 2009. A Photochemical Model of Titan's Atmosphere and Ionosphere. Icarus, 201, 226–256. doi:10.1016/j.icarus.2008.12.038.Google Scholar
Kuiper, G. P. 1944. Titan: A Satellite with an Atmosphere. ApJ, 100, 378–383. doi:10.1086/144679.Google Scholar
Kunde, V. G., Aikin, A. C., Hanel, R. A., Jennings, D. E., et al. 1981. C4H2,HC3N and C2N2 in Titan's Atmosphere. Nature, 292, 686–688. doi:10.1038/292686a0.Google Scholar
Lara, L. M., Lellouch, E., Lopez-Moreno, J. J., and Rodrigo, R. 1996. Vertical Distribution of Titan's Atmospheric Neutral Constituents. J. Geophys. Res., 101, 23261–23283. doi:10.1029/96JE02036.Google Scholar
Lavvas, P. P., Coustenis, A., and Vardavas, I. M. 2008. Coupling Photochemistry with Haze Formation in Titan's Atmosphere, Part II: Results and Validation with Cassini/Huygens Data. Planet. Space Sci., 56, 67–99. doi:10.1016/j.pss.2007.05.027.Google Scholar
Lellouch, E., Coustenis, A., Gautier, D., Raulin, F., et al. 1989. Titan's Atmosphere and Hypothesized Ocean: A Reanalysis of the Voyager 1 Radio-Occultation and IRIS 7.7-μm Data. Icarus, 79, 328–349. doi:10.1016/0019-1035(89)90081-X.Google Scholar
Lellouch, E., Hunten, D. M., Kockarts, G., and Coustenis, A. 1990. Titan's Thermosphere Profile. Icarus, 83, 308–324. doi:10.1016/0019-1035(90)90070-P.Google Scholar
Lellouch, E., Coustenis, A., Sebag, B., Cuby, J.-G., et al. 2003. Titan's 5-μm Window: Observations with the Very Large Telescope. Icarus, 162, 125–142. doi:10.1016/S0019-1035(02)00079-9.Google Scholar
Lellouch, E., Bézard, B., Bjoraker, G., Nixon, C., et al. 2008. Cassini/CIRS Far-Infrared Limb Spectra of Titan: CO Profile and Isotopic Measurements. BAAS, 40, 423.Google Scholar
Lellouch, E., Vinatier, S., Moreno, R., Allen, M., et al. 2010. Sounding of Titan's Atmosphere at Submillimeter Wavelengths from an Orbiting Spacecraft. Planet. Space Sci., 58, 1724–1739. doi:10.1016/j.pss.2010.05.007.Google Scholar
Liang, M.-C., Yung, Y. L., and Shemansky, D. E. 2007a. Photolytically Generated Aerosols in the Mesosphere and Thermosphere of Titan. ApJ, 661, L199–L202. doi:10.1086/518785.Google Scholar
Liang, M.-C., Heays, A. N., Lewis, B. R., Gibson, S. T., et al. 2007b. Source of Nitrogen Isotope Anomaly in HCN in the Atmosphere of Titan. ApJ, 664, L115–L118. doi:10.1086/520881.Google Scholar
Lindal, G. F., Wood, G. E., Hotz, H. B., Sweetnam, D. N., et al. 1983. The Atmosphere of Titan – An Analysis of the Voyager1 Radio Occultation Measurements. Icarus, 53, 348–363. doi:10.1016/0019-1035(83)90155-0.Google Scholar
Lunine, J. I., Yung, Y. L., and Lorenz, R. D. 1999. On the Volatile Inventory of Titan from Isotopic Abundances in Nitrogen and Methane. Planet. Space Sci., 47, 1291–1303. doi:10.1016/S0032-0633(99)00052-5.Google Scholar
Lutz, B. L., de Bergh, C., and Owen, T. 1983. Titan -Discovery of Carbon Monoxide in Its Atmosphere. Science, 220, 1374–1375. doi:10.1126/ science.220.4604.1374.Google Scholar
Magee, B. A., Waite, J. H., Mandt, K. E., Westlake, J., et al. 2009. INMS-Derived Composition of Titan's Upper Atmosphere: Analysis Methods and Model Comparison. Planet. Space Sci., 57, 1895–1916. doi:10.1016/j.pss.2009.06.016.Google Scholar
Mandt, K. E., Waite, J. H., Lewis, W., Magee, B., et al. 2009. Isotopic Evolution of the Major Constituents of Titan's Atmosphere Based on Cassini Data. Planet. Space Sci., 57, 1917–1930. doi:10.1016/j.pss.2009.06.005.Google Scholar
Mandt, K. E., Waite, J. H., Teolis, B. D., Magee, B. A., et al. 2012. The 12C/13C Ratio on Titan from Cassini INMS Measurements and Implications for the Evolution of Methane. ApJ, 749, 160. doi:10.1088/0004-637X/749/2/160.Google Scholar
Marten, A., Hidayat, T., Biraud, Y., and Moreno, R. 2002. New Millimeter Heterodyne Observations of Titan: Vertical Distributions of Nitriles HCN, HC3N, CH3CN, and the Isotopic Ratio 15N/14N in Its Atmosphere. Icarus, 158, 532–544. doi:10.1006/icar.2002.6897.Google Scholar
Moreno, R., Lellouch, E., Lara, L. M., Courtin, R., et al. 2011. First Detection of Hydrogen Isocyanide (HNC) in Titan's Atmosphere. A&A, 536, L12. doi:10.1051/0004-6361/201118199.Google Scholar
Moreno, R., Lellouch, E., Lara, L. M., Feuchtgruber, H., et al. 2012. The Abundance, Vertical Distribution and Origin of H2O in Titan's Atmosphere: Herschel Observations and Photochemical Modelling. Icarus, 221, 753–767. doi:10.1016/j.icarus.2012.09.006.Google Scholar
Mousis, O., Gautier, D., and Coustenis, A. 2002. The D/H Ratio in Methane in Titan: Origin and History. Icarus, 159, 156–165. doi:10.1006/icar.2002.6930.Google Scholar
Mousis, O., Lunine, J. I., Pasek, M., Cordier, D., et al. 2009. A Primordial Origin for the Atmospheric Methane of Saturn's Moon Titan. Icarus, 204, 749–751. doi:10.1016/j.icarus.2009.07.040.Google Scholar
Müller-Wodarg, I. C. F., Yelle, R. V, Cui, J., and Waite, J. H. 2008. Horizontal Structures and Dynamics of Titan's Thermosphere. J. Geophys. Res., 113, E10005. doi:10.1029/2007JE003033.Google Scholar
Niemann, H. B., Atreya, S. K., Bauer, S. J., Biemann, K., et al. 2002. The Gas Chromatograph Mass Spectrometer for the Huygens Probe. Space Sci. Rev., 104, 553–591. doi:10.1023/A:1023680305259.Google Scholar
Niemann, H. B., Atreya, S. K., Bauer, S. J., Carignan, G. R., et al. 2005. The Abundances of Constituents of Titan's Atmosphere from the GCMS Instrument on the Huygens Probe. Nature, 438, 779–784. doi:10.1038/ nature04122.Google Scholar
Niemann, H. B., Atreya, S. K., Demick, J. E., Gautier, D., et al. 2010. Composition of Titan's Lower Atmosphere and Simple Surface Volatiles as Measured by the Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer Experiment. J. Geophys. Res., 115, E12006. doi:10.1029/2010JE003659.Google Scholar
Nixon, C. A., Achterberg, R. K., Vinatier, S., Bézard, B., et al. 2008a. The 12C/13C Isotopic Ratio in Titan Hydrocarbons from Cassini/CIRS Infrared Spectra. Icarus, 195, 778–791. doi:10.1016/j.icarus.2008.01.012.Google Scholar
Nixon, C. A., Jennings, D. E., Bézard, B., Teanby, N. A., et al. 2008b. Isotopic Ratios in Titan's Atmosphere from Cassini CIRS Limb Sounding: CO2 at Low and Midlatitudes. ApJ, 681, L101-L103. doi:10.1086/590553.Google Scholar
Nixon, C. A., Teanby, N. A., Calcutt, S. B., Aslam, S., et al. 2009. Infrared Limb Sounding of Titan with the Cassini Composite Infra Red Spectrometer: Effects of the mid-IR Detector Spatial Responses. Appl. Opt., 48, 1912–1925. doi:10.1364/AO.48.001912.Google Scholar
Nixon, C. A., Achterberg, R. K., Teanby, N. A., Irwin, P. G. J., et al. 2010. Upper Limits for Undetected Trace Species in the Stratosphere of Titan. Faraday Discuss., 147, 65–81. doi:10.1039/c003771k.Google Scholar
Nixon, C. A., Temelso, B., Vinatier, S., Teanby, N. A., et al. 2012. Isotopic Ratios in Titan's Methane: Measurements and Modeling. ApJ, 749, 159. doi:10.1088/0004-637X/748/1/1.Google Scholar
Noll, K. S., Geballe, T. R., Knacke, R. F., and Pendleton, Y. J. 1996. Titan's 5 μm Spectral Window: Carbon Monoxide and the Albedo of the Surface. Icarus, 124, 625–631. doi:10.1006/icar.1996.0236.Google Scholar
Owen, T., Biver, N., Marten, A., Matthews, H., et al. 1999. Saturn VI (Titan). IAU Circ., 7306, 3.Google Scholar
Penteado, P. F., and Griffith, C. A. 2010. Ground-Based Measurements of the Methane Distribution on Titan. Icarus, 206, 345–351. doi:10.1016/j.icarus.2009.08.022.Google Scholar
Penteado, P. F., Griffith, C. A., Greathouse, T. K., and de Bergh, C. 2005. Measurements of CH3D and CH4 in Titan from Infrared Spectroscopy. ApJ, 629, L53–L56. doi:10.1086/444353.Google Scholar
Penteado, P. F., Griffith, C. A., Tomasko, M. G., Engel, S., et al. 2010. Latitudinal Variations in Titan's Methane and Haze from Cassini VIMS Observations. Icarus, 206, 352–365. doi:10.1016/j.icarus.2009.11.003.Google Scholar
Pinto, J. P., Lunine, J. I., Kim, S.-J., and Yung, Y. L. 1986. D to H Ratio and the Origin and Evolution of Titan's Atmosphere. Nature, 319, 388–390. doi:10.1038/319388a0.Google Scholar
Roe, H. G., de Pater, I., and McKay, C. P. 2004. Seasonal Variation of Titan's Stratospheric Ethylene (C2H4) Observed. Icarus, 169, 440–461. doi:10.1016/ j.icarus.2004.01.002.Google Scholar
Samuelson, R. E., Hanel, R. A., Kunde, V. G., and Maguire, W. C. 1981. Mean Molecular Weight and Hydrogen Abundance of Titan's Atmosphere. Nature, 292, 688–693. doi:10.1038/292688a0.Google Scholar
Samuelson, R. E., Maguire, W. C., Hanel, R. A., et al. 1983. CO2 on Titan. J. Geophys. Res., 88, 8709–8715. doi:10.1029/JA088iA11p08709.Google Scholar
Samuelson, R. E., Nath, N. R., and Borysow, A. 1997. Gaseous Abundances and Methane Supersaturation in Titan's Troposphere. Planet. Space Sci., 45, 959–980. doi:10.1016/S0032-0633(97)00090-1.Google Scholar
Schröder, S. E., and Keller, H. U. 2008. The Reflectance Spectrum of Titan's Surface at the Huygens Landing Site Determined by the Descent Imager/Spectral Radiometer. Planet. Space Sci., 56, 753–769. doi:10.1016/j.pss.2007.10.011.Google Scholar
Shemansky, D. E., Stewart, A. I. F., West, R. A., Esposito, L. W., et al. 2005. The Cassini UVIS Stellar Probe of the Titan Atmosphere. Science, 308, 978–982. doi:10.1126/science.1111790.Google Scholar
Smith, G. R., Strobel, D. F., Broadfoot, A. L., Sandel, B. R., et al. 1982. Titan's Upper Atmosphere – Composition and Temperature from the EUV Solar Occultation Results. J. Geophys. Res., 87, 1351–1359. doi:10.1029/JA087iA03p01351.Google Scholar
Strobel, D. F. 2010. Molecular Hydrogen in Titan's Atmosphere: Implications of the Measured Tropospheric and Thermospheric Mole Fractions. Icarus, 208, 878–886. doi:10.1016/ j.icarus.2010.03.003.Google Scholar
Strobel, D. F., and Shemansky, D. E. 1982. EUV Emission from Titan's Upper Atmosphere – Voyager 1 Encounter. J. Geophys. Res., 87, 1361–1368. doi:10.1029/JA087iA03p01361.Google Scholar
Strobel, D. F., Atreya, S. K., Bézard, B., Ferri, F., et al. 2009. Atmospheric Structure and Composition. Pages 235–257 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi:10.1007/978-1-4020-9215-2V10.
Teanby, N. A., Irwin, P. G. J., de Kok, R., Vinatier, S., et al. 2007. Vertical Profiles of HCN, HC3N, and C2H2 in Titan's Atmosphere Derived from Cassini/CIRS Data. Icarus, 186, 364–384. doi:10.1016/ j.icarus.2006.09.024.Google Scholar
Teanby, N. A., de Kok, R., Irwin, P. G. J., Osprey, S., et al. 2008. Titan's Winter Polar Vortex Structure Revealed by Chemical Tracers. J. Geophys. Res., 113, E12003. doi:10.1029/2008JE003218.Google Scholar
Teanby, N. A., de Kok, R., and Irwin, P. G. J., 2009a. Small-Scale Composition and Haze Layering in Titan's Polar Vortex. Icarus, 204, 645–657. doi:10.1016/j.icarus.2009.07.027.Google Scholar
Teanby, N. A., Irwin, P. G. J., de Kok, R., Jolly, A., et al. 2009b. Titan's Stratospheric C2N2,C3H4, and C4H2 Abundances from Cassini/CIRS Far-Infrared Spectra. Icarus, 202, 620–631. doi:10.1016/j.icarus.2009.03.022.Google Scholar
Teanby, N. A., Irwin, P. G. J., de Kok, R., and Nixon, C. A. 2009c. Dynamical Implications of Seasonal and Spatial Variations in Titan's Stratospheric Composition. Phil. Trans. R. Soc. A, 367, 697–711. doi:10.1098/rsta.2008.0164.Google Scholar
Teanby, N. A., Irwin, P. G. J., de Kok, R., and Nixon, C. A. 2010a. Mapping Titan's HCN in the Far Infra-Red: Implications for Photochemistry. Faraday Discuss., 147, 51–64. doi:10.1039/c001690j.Google Scholar
Teanby, N. A., Irwin, P. G. J., de Kok, R., and Nixon, C. A. 2010b. Seasonal Changes in Titan's Polar Trace Gas Abundance Observed by Cassini. ApJ, 724, L84–L89. doi:10.1088/2041-8205/724/1/L84.Google Scholar
Teolis, B. D., Perry, M. E., Magee, B. A., Westlake, J., et al. 2010. Detection and Measurement of Ice Grains and Gas Distribution in the Enceladus Plume by Cassini's Ion Neutral Mass Spectrometer. J. Geophys. Res., 115, A09222. doi:10.1029/2009JA015192.Google Scholar
Tomasko, M. G., Archinal, B., Becker, T., Bézard, B., et al. 2005. Rain, Winds and Haze During the Huygens Probe's Descent to Titan's Surface. Nature, 438, 765–778. doi:10.1038/nature04126.Google Scholar
Trafton, L. 1972a. On the Possible Detection of H2 in Titan's Atmosphere. ApJ, 175, 285–293. doi:10.1086/151556.Google Scholar
Trafton, L. 1972b. The Bulk Composition of Titan's Atmosphere. ApJ, 175, 295–306. doi:10.1086/151557.Google Scholar
Vervack, R. J., Sandel, B. R., and Strobel, D. F. 2004. New Perspectives on Titan's Upper Atmosphere froma Reanalysis of the Voyager 1 UVS Solar Occultations. Icarus, 170, 91–112. doi:10.1016/j.icarus.2004.03.005.Google Scholar
Vinatier, S. 2007. Analyse des spectres infrarouges thermiques emispar l'atmosphère de Titan enregistrés par l'instrument Cassini/CIRS. PhD. thesis, Université Denis Diderot – Paris VII.
Vinatier, S., Bézard, B., Fouchet, T., Teanby, N. A., et al. 2007a. Vertical Abundance Profiles of Hydrocarbons in Titan's Atmosphere at 15° S and 80° N Retrieved from Cassini/CIRS Spectra. Icarus, 188, 120–138. doi:10.1016/j.icarus.2006.10.031.Google Scholar
Vinatier, S., Bézard, B., and Nixon, C. A. 2007b. The Titan 14N/15N and 12C/13C Isotopic Ratios in HCN from Cassini/CIRS. Icarus, 191, 712–721. doi:10.1016/j.icarus.2007.06.001.Google Scholar
Vinatier, S., Bézard, B., Nixon, C. A., Mamoutkine, A., et al. 2010. Analysis of Cassini/CIRS Limb Spectra of Titan Acquired During the Nominal Mission. I. Hydrocarbons, Nitriles and CO2 Vertical Mixing Ratio Profiles. Icarus, 205, 559–570. doi:10.1016/j.icarus.2009.08.013.Google Scholar
Vuitton, V, Yelle, R. V, and Anicich, V G. 2006. The Nitrogen Chemistry of Titan's Upper Atmosphere Revealed. ApJ, 647, L175–L178. doi:10.1086/507467.Google Scholar
Vuitton, V., Yelle, R. V., and McEwan, M. J. 2007. Ion Chemistry and N-Containing Molecules in Titan's Upper Atmosphere. Icarus, 191, 722–742. doi:10.1016/j.icarus.2007.06.023.Google Scholar
Waite, J. H., Lewis, W. S., Kasprzak, W. T., Anicich, V. G., et al. 2004. The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation. Space Sci. Rev., 114, 113–231. doi:10.1007/s11214-004-1408-2.Google Scholar
Waite, J. H., Niemann, H., Yelle, R. V., Kasprzak, W. T. 2005. Ion Neutral Mass Spectrometer Results from the First Flyby of Titan. Science, 308, 982–986. doi:10.1126/science.1110652.Google Scholar
Waite, J. H., Young, D. T., Cravens, T. E., Coates, A. J., et al. 2007. The Process of Tholin Formation in Titan's Upper Atmosphere. Science, 316, 870–875. doi:10.1126/science.1139727.Google Scholar
Waite, J. H. Jr., Lewis, W. S., Magee, B. A., Lunine, J. I., et al. 2009. Liquid Water on Enceladus from Observations of Ammonia and 40 Ar in the Plume. Nature, 460, 487–490. doi:10.1038/nature08153.Google Scholar
West, R. A., Balloch, J., Dumont, P., Lavvas, P., et al. 2011. The Evolution of Titan's Detached Haze Layer Near Equinox in 2009. J. Geophys. Res., 38, L06204. doi:10.1029/2011GL046843.Google Scholar
Wilson, E. H., and Atreya, S. K. 2004. Current State of Modeling the Photochemistry of Titan's Mutually Dependent Atmosphere and Ionosphere. J. Geophys. Res., 109, E06002. doi:10.1029/2003JE002181.Google Scholar
Wilson, E. H., and Atreya, S. K. 2009. Titan's Carbon Budget and the Case of the Missing Ethane. J. Phys. Chem. A, 1131, 11221–11226. doi:10.1021/jp905535a.Google Scholar
Wong, A.-S., Morgan, C. G., Yung, Y. L., and Owen, T. 2002. Evolution of CO on Titan. Icarus, 155, 382–392. doi:10.1006/icar.2001.6720.Google Scholar
Yelle, R. V, Cui, J., and Müller-Wodarg, I. C. F., 2008. Methane Escape from Titan's Atmosphere. J. Geophys. Res., 113, E10003. doi:10.1029/2007JE003031.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×