Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T04:11:25.837Z Has data issue: false hasContentIssue false

7 - Endocrinology of tick development and reproduction

Published online by Cambridge University Press:  21 August 2009

H. H. Rees
Affiliation:
School of Biological Sciences University of Liverpool The Biosciences Building Crown Street Liverpool L69 7ZB UK
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

The developmental hormone systems of insects and crustaceans are probably best understood of all the arthropods (for reviews, see Gilbert, Iatrou & Gill, 2004; Wainwright & Rees, 2001). In other arthropod classes, information concerning the identification and functional significance of hormones is fragmentary or non-existent. The endocrine regulation of development and reproduction in ticks (acarines) has been reviewed (Oliver & Dotson, 1993; Lomas & Rees, 1998; Chang & Kaufman, 2004; Rees, 2004) and the reader is referred to these for further detail. However, there is a relative lack of new work in this field.

Blood meals are critical in ticks for triggering various events, including the endocrine system (see Chapter 8). In adult female ixodid ticks, the transition between the slow feeding phase and the rapid engorgement phase (that has been defined as the critical weight: Harris & Kaufman, 1984; Lindsay & Kaufman, 1988; Weiss & Kaufman, 2001) seems to be a critical control point for regulation of many endocrine events, including salivary gland degeneration, vitellogenesis and egg production (see Chapters 3 and 8). Thus, females prematurely removed from the host below the critical weight retain a host-seeking strategy and can reattach to a host if given the opportunity, do not undergo salivary gland degeneration and will not lay eggs. However, females prematurely removed above the critical weight are unable to reattach to a host, undergo salivary gland degeneration and will lay as many eggs as the acquired blood meal will support.

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 143 - 163
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aeschlimann, A. A. (1968). La ponte chez Ornithodoros moubata Murray (Ixodoidea: Argasidae). Revue suisse de Zoologie 75, 1033–1039.Google Scholar
Allan, S. A., Phillips, J. S., Taylor, D. & Sonenshine, D. E. (1988). Genital sex pheromones of ixodid ticks: evidence for the role of fatty acids from the anterior reproductive tract in mating of Dermacentor variabilis and Dermacentor andersoni. Journal of Insect Physiology 34, 315–323.CrossRefGoogle Scholar
Arrieta, M. C., Leskiw, B. K. & Kaufman, W. R. (2006). Antimicrobial activity in the egg wax of the African cattle tick Amblyomma hebraeum (Acari: Ixodidae). Experimental and Applied Acarology 39, 297–313.CrossRefGoogle Scholar
Assenga, S. P., You, M., Shy, C. H., et al. (2006). The use of a recombinant baculovirus expressing a chitinase from the hard tick Haemophysalis longicornis and its potential application as a bioacaricide for tick control. Parasitology Research 98, 111–118.CrossRefGoogle Scholar
Bassal, T. T. M. & Roshdy, M. A. (1974). Argas (Persicargas) arboreus: juvenile hormone analog termination of diapause and oviposition control. Experimental Parasitology 36, 34–39.CrossRefGoogle ScholarPubMed
Bellés, X. (1998). Endocrine effectors in insect vitellogenesis. In Recent Advances in Arthropod Endocrinology, eds. Coast, G. M. & Webster, S. G., pp. 71–90. Cambridge, UK: Cambridge University Press.Google Scholar
Binnington, K. C. (1981). Ultrastructural evidence for the endocrine nature of the lateral organs of the cattle tick Boophilus microplus. Tissue and Cell 13, 475–490.CrossRefGoogle ScholarPubMed
Binnington, K. C. (1987). Histology and ultrastructure of the acarine synganglion. In The Arthropod Brain: Its Evolution, Development, Structure, and Functions, ed. Gupta, A. P., pp. 95–109. Oxford, UK: Pergamon Press.Google Scholar
Binnington, K. C. & Oliver, J. H. Jr (1982). Structure and function of the circulatory, nervous and neuroendocrine systems of ticks. In Physiology of Ticks, eds. Obenchain, F. D. & Galun, R., pp. 351–398. Oxford, UK: Pergamon Press.Google Scholar
Bouvier, J., Diehl, P. A. & Morici, M. (1982). Ecdysone metabolism in the tick Ornithodoros moubata (Argasidae, Ixodoidea). Revue suisse de Zoologie 89, 967–976.CrossRefGoogle Scholar
Campbell, J. D. & Oliver, J. H. Jr (1984). Membrane feeding and developmental effects of ingested β-ecdysone on Ornithodoros parkeri (Acari: Argasidae). In Acarology VI, vol. 1, eds. Griffiths, D. A. & Bowman, C. E., pp. 393–399. Chichester, UK: Ellis Horwood.Google Scholar
Chang, E. S. & Kaufman, W. R. (2004). Endocrinology of crustaceans and arachnids. In Comprehensive Insect Science, vol. 3, Endocrinology, eds. Gilbert, L. I., Iatrou, K. & Gill, S., pp. 805–842. Amsterdam: Elsevier.Google Scholar
Chinzei, Y. (1986). Vitellogenin biosynthesis and processing in a soft tick, Ornithodoros moubata. In Host Regulated Development Mechanisms in Vector Arthropods, eds. Borovsky, D. & Spielman, A., pp. 18–24. Vero Beach, FL: University of Florida Press.Google Scholar
Chinzei, Y. & Taylor, D. (1990). Regulation of vitellogenesis induction by engorgement in the soft tick (Ornithodoros moubata). Advances in Invertebrate Reproduction 5, 565–570.Google Scholar
Chinzei, Y. & Yano, I. (1985). Fat body is the site of vitellogenin synthesis in the soft tick Ornithodoros moubata. Journal of Comparative Physiology B 155, 671–678.CrossRefGoogle Scholar
Chinzei, Y., Chino, H. & Takahashi, K. (1983). Purification and properties of vitellogenin and vitellin from a tick Ornithodoros moubata. Journal of Comparative Physiology 152, 13–21.CrossRefGoogle Scholar
Chinzei, Y., Taylor, D. & Ando, K. (1991). Effects of juvenile hormone and its analogs on vitellogenin synthesis and ovarian development in Ornithodoros moubata (Acari: argasidae). Journal of Medical Entomology 28, 506–513.CrossRefGoogle Scholar
Chinzei, Y., Taylor, D., Miura, K. & Ando, K. (1992). Vitellogenesis induction by synganglion factor in adult female tick, Ornithodoros moubata (Acari: Argasidae). Journal of the Acarological Society of Japan 1, 15–26.CrossRefGoogle Scholar
Connat, J.-L. (1987). Aspects endocrinologiques de la physiologie du développement et de la reproduction chez le tiques. Unpublished Ph.D. thesis, University of Bourgogne, France.
Connat, J.-L. & Diehl, P. A. (1986). Probable occurrence of ecdysteroid fatty acid esters in different classes of arthropods. Insect Biochemistry 16, 91–97.CrossRefGoogle Scholar
Connat, J.-L. & Dotson, E. M. (1988). Comparative investigation of the egg ecdysteroids of ticks using radioimmunoassay and metabolic studies. Journal of Insect Physiology 34, 639–645.CrossRefGoogle Scholar
Connat, J.-L. & Nepa, M.-C. (1990). Effects of different anti-juvenile hormone agents on the fecundity of the female tick Ornithodoros moubata. Pesticide Biochemistry and Physiology 37, 266–274.CrossRefGoogle Scholar
Connat, J.-L., Delbecque, J.-P., Alabouvette, J. & Pitoizet, N. (1997). Evolution of ecdysteroids and of their apolar conjugates during the post-embryonic development of the tick Ornithodoros moubata. Archives of Insect Biochemistry and Physiology 35, 159–168.3.0.CO;2-A>CrossRefGoogle Scholar
Connat, J.-L., Diehl, P. A., Dumont, N., Carminati, S. & Thompson, M. J. (1983 a). Effects of exogenous ecdysteroids on the female tick, Ornithodoros moubata: induction of supermolting and influence on oogenesis. Zeitschrift für angewandte Entomologie 96, 520–530.CrossRefGoogle Scholar
Connat, J.-L., Diehl, P. A., Gfeller, H. & Morici, M. (1985). Ecdysteroids in females and eggs of the ixodid tick Amblyomma hebraeum. International Journal of Invertebrate Reproduction and Development 8, 103–116.CrossRefGoogle Scholar
Connat, J.-L., Diehl, P. A. & Morici, M. (1984). Metabolism of ecdysteroids during the vitellogenesis of the tick Ornithodoros moubata (Ixodoidea: Argasidae): accumulation of apolar metabolites in the eggs. General and Comparative Endocrinology 56, 100–110.CrossRefGoogle ScholarPubMed
Connat, J.-L., Diehl, P. A. & Thompson, M. J. (1986 a). Possible inactivation of ingested ecdysteroids by conjugation with long-chain fatty acids in the female tick Ornithodoros moubata (Acarina: Argasidae). Archives of Insect Biochemistry and Physiology 3, 235–252.CrossRefGoogle Scholar
Connat, J.-L., Dotson, E. M. & Diehl, P. A. (1987). Metabolism of ecdysteroids in the female tick Amblyomma hebraeum (Ixodoidea: Ixodidae): accumulation of free ecdysone and 20-hydroxyecdysone in the eggs. Journal of Comparative Physiology B 157, 689–699.CrossRefGoogle ScholarPubMed
Connat, J.-L., Dotson, E. M. & Diehl, P. A. (1988). Apolar conjugates of ecdysteroids are not used as a storage form of molting hormone in the argasid tick Ornithodoros moubata. Archives of Insect Biochemistry and Physiology 9, 221–235.CrossRefGoogle Scholar
Connat, J.-L., Ducommun, J. & Diehl, P. A. (1983 b). Juvenile hormone-like substances can induce vitellogenesis in the tick Ornithodoros moubata (Acarina: Argasidae). International Journal of Invertebrate Reproduction 6, 285–294.CrossRefGoogle Scholar
Connat, J.-L., Ducommun, J., Diehl, P. A. & Aeschlimann, A. (1986 b). Some aspects of the control of the gonotrophic cycle in the tick Ornithodoros moubata (Ixodoidea, Argasidae). In Morphology, Physiology, and Behavioral Biology of Ticks, eds. Sauer, J. R. & Hair, J. A., pp. 194–216. Chichester, UK: Ellis Horwood.Google Scholar
Connat, J.-L., Lafont, R. & Diehl, P. A. (1986 c). Metabolism of [3H]ecdysone by isolated tissues of the female ixodid tick Amblyomma hebraeum (Ixodoidea: Ixodidae). Molecular and Cellular Endocrinology 47, 257–267.CrossRefGoogle Scholar
Crosby, T., Evershed, R. P., Lewis, D., Wigglesworth, K. P. & Rees, H. H. (1986). Identification of ecdysone 22-long chain fatty acyl esters in newly laid eggs of the cattle tick Boophilus microplus. Biochemical Journal 240, 131–138.CrossRefGoogle Scholar
Davis, H. H., Dotson, E. M. & Oliver, J. H. Jr (1994). Localization of insulin-like immunoreactivity in the synganglion of nymphal and adult Dermacentor variabilis (Acari: Ixodidae). Experimental and Applied Acarology 18, 111–122.CrossRefGoogle Scholar
Dees, W. H., Sonenshine, D. E. & Breidling, E. (1984 a). Ecdysteroids in the American dog tick, Dermacentor variabilis (Acari: Ixodidae), during different periods of tick development. Journal of Medical Entomology 21, 514–523.CrossRefGoogle Scholar
Dees, W. H., Sonenshine, D. E. & Breidling, E. (1984 b). Ecdysteroids in Hyalomma dromedarii and Dermacentor variabilis and their effects on sex pheromone activity. In Acarology VI, vol. 1, eds. Griffiths, D. A. & Bowman, C. E., pp. 405–413. Chichester, UK: Ellis Horwood.Google Scholar
Dees, W. H., Sonenshine, D. E. & Briedling, E. (1985). Ecdysteroids in the camel tick, Hyalomma dromedarii (Acari: Ixodidae) and comparison with sex pheromone activity. Journal of Medical Entomology 22, 22–27.CrossRefGoogle Scholar
Delbecque, J. P., Diehl, P. A. & O'Connor, J. D. (1978). Presence of ecdysone and ecdysterone in the tick Amblyomma hebraeum Koch. Experientia 34, 1379–1381.CrossRefGoogle Scholar
Diehl, P. A., Connat, J.-L. & Dotson, E. M. (1986). Chemistry, function, and metabolism of tick ecdysteroids. In Morphology, Physiology and Behavioural Biology of Ticks, eds. Sauer, J. R. & Hair, J. H., pp. 165–193. Chichester, UK: Ellis Horwood.Google Scholar
Diehl, P. A., Connat, J.-L., Girault, J. P. & Lafont, R. (1985). A new class of apolar ecdysteroid conjugates: esters of 20-hydroxy-ecdysone with long-chain fatty acids in ticks. International Journal of Invertebrate Reproduction and Development 8, 1–13.CrossRefGoogle Scholar
Diehl, P. A., Germond, J. E. & Morici, M. (1982). Correlations between ecdysteroid titres and integument structure in nymphs of the tick, Amblyomma hebraeum Koch (Acarina: Ixodidae). Revue suisse de Zoologie 89, 859–868.CrossRefGoogle Scholar
Dinan, L. (1997). Ecdysteroids in adults and eggs of the house cricket, Acheta domesticus (Orthoptera: Gryllidae). Comparative Biochemistry and Physiology B 116, 129–135.CrossRefGoogle Scholar
Donahue, W. A., Teel, P. D., Strey, O. F. & Meola, R. W. (1997). Pyriproxyfen effects on newly engorged larvae and nymphs of the lone star tick (Acari: Ixodidae). Journal of Medical Entomology 34, 206–211.CrossRefGoogle Scholar
Dotson, E. M., Connat, J.-L. & Diehl, P. A. (1991). Cuticle deposition and ecdysteroid titres during embryonic and larval development of the argasid tick Ornithodoros moubata. General and Comparative Endocrinology 82, 386–400.CrossRefGoogle Scholar
Dotson, E. M., Connat, J.-L. & Diehl, P. A. (1993). Metabolism of [3H]ecdysone in embryos and larvae of the tick Ornithodoros moubata. Archives of Insect Biochemisty and Physiology 23, 67–78.CrossRefGoogle ScholarPubMed
Dotson, E. M., Connat, J.-L. & Diehl, P. A. (1995). Ecdysteroid titre and metabolism and cuticle deposition during embryogenesis of the ixodid tick Amblyomma hebraeum (Koch). Comparative Biochemistry and Physiology B 110, 155–166.CrossRefGoogle Scholar
Dumber, J. B. & Oliver, J. H. Jr (1981). Kinetics of spermatogenesis, cell cycle analysis, and testis development in nymphs of the tick Dermacentor variabilis. Journal of Insect Physiology 27, 743–753.Google Scholar
Said, A El-., Swiderski, Z., Aeschlimann, A. & Diehl, P. A. (1981). Fine structure of spermiogenesis in the tick Amblyomma hebraeum (Acari: Ixodidae): late stages of differentiation and structure of the mature spermatozoon. Journal of Medical Entomology 18, 464–476.CrossRefGoogle Scholar
Friesen, K. J. & Kaufman, W. R. (2002). Quantification of vitellogenesis and its control by 20-hydroxyecdysone in the ixodid tick, Amblyomma hebraeum. Journal of Insect Physiology 48, 773–782.CrossRefGoogle ScholarPubMed
Friesen, K. J. & Kaufman, W. R. (2003). Cypermethrin inhibits egg development in the ixodid tick, Amblyomma hebraeum. Pesticide Biochemistry and Physiology 76, 25–35.CrossRefGoogle Scholar
Friesen, K. J. & Kaufman, W. R. (2004). Effects of 20-hydroxyecdysone and other hormones on egg development, and identification of a vitellin-binding protein in the ovary of the tick, Amblyomma hebraeum. Journal of Insect Physiology 50, 519–529.CrossRefGoogle ScholarPubMed
Friesen, K. J., Suri, R. & Kaufman, W. R. (2003). Effects of the avermectin, MK-243, on ovary development and salivary gland degeneration in the ixodid tick, Amblyomma hebraeum. Pesticide Biochemistry and Physiology 76, 82–90.CrossRefGoogle Scholar
Gade, G., Hoffmann, K. H. & Spring, J. (1997). Hormonal regulation in insects: facts, gaps, and future directions. Physiological Reviews 77, 963–1032.CrossRefGoogle ScholarPubMed
Germond, J.-E., Diehl, P. A. & Morici, M. (1982). Correlations between integument structure and ecdysteroid titres in fifth-stage nymphs of the tick, Ornithodoros moubata. General and Comparative Endocrinology 46, 255–266.CrossRefGoogle Scholar
Gilbert, L. I., Iatrou, K. & Gill, S. (eds.) (2004). Comprehensive Insect Science, vol. 3, Endocrinology. Amsterdam: Elsevier.Google Scholar
Goodman, W. & Granger, N. (2004). The juvenile hormone. In Comprehensive Insect Science, vol. 3, Endocrinology, eds. Gilbert, L. I., Iatrou, K. & Gill, S., pp. 319–408. Amsterdam: Elsevier.Google Scholar
Guo, X., Harmon, M. A., Laudet, V., Mangelsdorf, D. J. & Palmer, M. J. (1997). Isolation of a functional ecdysteroid receptor homologue from the ixodid tick, Amblyomma americanum (L.). Insect Biochemistry and Molecular Biology 27, 945–962.CrossRefGoogle Scholar
Guo, X., Xu, Q., Harmon, M. A., et al. (1998). Isolation of two functional retinoid X receptor subtypes from the Ixodid tick, Amblyomma americanum (L.). Molecular and Cellular Endocrinology 139, 45–60.CrossRefGoogle Scholar
Hamilton, J. G. C. (1992). The role of pheromones in tick biology. Parasitology Today 8, 130–133.CrossRefGoogle ScholarPubMed
Hammock, B. D. (1985). Regulation of juvenile hormone titer: degradation. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 7, eds. Kerkut, G. A. & Gilbert, L. I, pp. 431–472. Oxford, UK: Pergamon Press.Google Scholar
Harris, R A. & Kaufman, W. R. (1981). Hormonal control of salivary gland degeneration in the ixodid tick Amblyomma hebraeum. Journal of Insect Physiology 27, 241–243.CrossRefGoogle Scholar
Harris, R. A. & Kaufman, W. R. (1984). Neural involvement in the control of salivary gland degeneration in the ixodid tick, Amblyomma hebraeum. Journal of Experimental Biology 109, 281–290.Google Scholar
Harris, R. A. & Kaufman, W. R. (1985). Ecdysteroids: possible candidates for the hormone which triggers salivary gland degeneration in the ixodid tick Amblyomma hebraeum. Experientia 41, 740–742.CrossRefGoogle Scholar
Hayward, D. C., Bastiani, M. J., Trueman, J. W. H., et al. (1999). The sequence of Locusta RXR, homologous to Drosophila Ultraspiracle, and its evolutionary implications. Development Genes and Evolution 209, 564–571.CrossRefGoogle ScholarPubMed
Henrich, V. (2004). The ecdysteroid receptor (EcR). In Comprehensive Insect Science, vol. 3, Endocrinology, eds. Gilbert, L. I., Iatrou, K. & Gill, S., pp. 245–285. Amsterdam: Elsevier.Google Scholar
Henrich, V. C., Rybczynski, R. & Gilbert, L. I. (1999). Peptide hormones, and puffs: mechanisms and models in insect development. Vitamins and Hormones – Advances in Research and Applications 55, 73–125.Google ScholarPubMed
Hoffmann, K. H., Meyering-Vos, M. & Lorenz, M. W. (1999). Allatostatins and allatotropins: is the regulation of corpora allata activity their primary function?European Journal of Entomology 96, 255–266.Google Scholar
Holmes, S. P., Barhoumit, R., Nachman, R. J. & Pietrantonio, P. V. (2003). Functional analysis of a G protein-coupled receptor from the Southern cattle tick Boophilus microplus (Acari: Ixodidae) identifies it as the first arthropod myokinin receptor. Insect Molecular Biology 12, 27–38.CrossRefGoogle Scholar
Holmes, S. P., He, H., Chen, A. C., Ivie, G. W. & Pietrantonio, P. V. (2000). Cloning and transcriptional expression of a leucokinin-like peptide receptor from the Southern cattle tick, Boophilus microplus (Acari: Ixodidae). Insect Molecular Biology 9, 457–465.CrossRefGoogle Scholar
Isaac, R. E. & Slinger, A. J. (1989). Storage and excretion of ecdysteroids. In Ecdysone, ed. Koolman, J., pp. 250–253. Stuttgart, Germany: G. Thieme.Google Scholar
Iwami, M., Kawakami, A., Ishizaki, H., et al. (1989). Cloning of a gene encoding bombyxin, an insulin-like brain secretory peptide of the silkmoth Bombyx mori with prothoracicotropic activity. Development Growth and Differentiation 31, 31–37.CrossRefGoogle Scholar
Jaffe, H., Hayes, K. K., Sonenshine, D. E., et al. (1986). Controlled release reservoirs system for the delivery of insect steroid analogues against ticks. Journal of Medical Entomology 23, 685–691.CrossRefGoogle Scholar
James, A. M. & Oliver, J. H. Jr (1997). Purification and partial characterization of vitellin from the black-legged tick Ixodes scapularis. Insect Biochemistry and Molecular Biology 27, 639–649.CrossRefGoogle ScholarPubMed
Jarvis, T. D., Earley, F. G. & Rees, H. H. (1994). Ecdysteroid biosynthesis in larval testes of Spodoptera littoralis. Insect Biochemistry and Molecular Biology 24, 531–537.CrossRefGoogle Scholar
Kaufman, W. R. (1989). Tick–host interaction: a synthesis of current concepts. Parasitology Today 5, 47–56.CrossRefGoogle ScholarPubMed
Kaufman, W. R. (1991). Correlation between haemolymph ecdysteroid titre, salivary gland degeneration and ovarian development in the ixodid tick, Amblyomma hebraeum Koch. Journal of Insect Physiology 37, 95–99.CrossRefGoogle Scholar
Khalil, G. M. (1970). Biochemistry and physiological studies on certain ticks (Ixodoidea): gonad development and gametogenesis in Hyalomma (H.) anatolicum excavatum Koch (Ixodidae). Journal of Parasitology 56, 596–610.CrossRefGoogle Scholar
Khalil, G. M., Sonenshine, D. E., Hanafy, H. A. & Abdelmonem, A. E. (1984). Juvenile hormone I effects on the camel tick, Hyalomma dromedarii (Acari: Ixodidae). Journal of Medical Entomology 21, 561–566.CrossRefGoogle Scholar
Kozlova, T. & Thummel, C. S. (2000). Steroid regulation of postembryonic development and reproduction in Drosophila. Trends in Endocrinology and Metabolism 11, 276–280.CrossRefGoogle Scholar
Kubo, I., Komatsu, S., Asaka, Y. & Boer, G. (1987). Isolation and identification of apolar metabolites of ingested 20-hydroxyecdysone in frass of Heliothis virescens larvae. Journal of Chemical Ecology 13, 785–794.CrossRefGoogle Scholar
Kulcsar, P., Prestwich, G. G. & Sonenshine, D. E. (1989). Detection of binding proteins for juvenile hormone-like substances in ticks by photoaffinity labelling. In Host Regulated Developmental Mechanisms in Vector Arthropods, eds. Borovsky, D. & Spielman, A., pp. 18–23. Vero Beach, FL: University of Florida Press.Google Scholar
Lafont, R. & Connat, J.-L. (1989). Pathways of ecdysone metabolism. In Ecdysone, ed. Koolman, J., pp. 167–173. Stuttgart, Germany: G. Thieme.Google Scholar
Lafont, R., Dauphin-Villemant, C., Warren, J. & Rees, H. H. (2004). Ecdysteroid chemistry and biochemistry. In Comprehensive Insect Science, vol. 3, Endocrinology, eds. Gilbert, L. I., Iatrou, K. & Gill, S., pp. 125–195. Amsterdam: Elsevier.Google Scholar
Leahy, M. G. & Booth, K. S. (1980). Precocene induction of tick sterility and ecdysis failure. Journal of Medical Entomology 17, 18–21.CrossRefGoogle Scholar
Leid, M., Kastner, P. & Chambon, P. (1992). Multiplicity generates diversity in the retinoic acid signalling pathway. Trends in Biochemical Sciences 17, 427–433.CrossRefGoogle Scholar
Lees, K. & Bowman, A. S. (2007). Tick neurobiology: recent advances and the post-genomic era. Invertebrate Neuroscience 7, 183–198.CrossRefGoogle ScholarPubMed
Liang, J., Zhang, J., Lai, R. & Rees, H. H. (2005). An opioid peptide from synganglia of the tick, Amblyomma testindinarium. Peptides 26, 603–606.CrossRefGoogle ScholarPubMed
Lindsay, P. J. & Kaufman, W. R. (1988). Action of some steroids on salivary gland degeneration in the ixodid tick, A. americanum. Journal of Insect Physiology 34, 351–359.CrossRefGoogle Scholar
Loeb, M. J., Brandt, E. P., Woods, C. W. & Borkovec, A. B. (1987). An ecdysiotropic factor from brains of Heliothis virescens induces testes to produce immunodetectable ecdysteroid in vitro. Journal of Experimental Zoology 243, 275–282.CrossRefGoogle Scholar
Lomas, L. O. & Rees, H. H. (1998). Endocrine regulation of development and reproduction in acarines. In Recent Advances in Arthropod Endocrinology, eds. Coast, G. M. & Webster, S. G., pp. 91–124. Cambridge, UK: Cambridge University Press.Google Scholar
Lomas, L. O., Turner, P. C. & Rees, H. H. (1997). A novel neuropeptide–endocrine interaction controlling ecdysteroid production in ixodid ticks. Proceedings of the Royal Society of London B 264, 589–596.CrossRefGoogle ScholarPubMed
Lunke, M. D. & Kaufman, W. R. (1993). Hormonal control of ovarian development in the tick Amblyomma hebraeum Koch (Acari: Ixodidae). Invertebrate Reproduction and Development 23, 25–38.CrossRefGoogle Scholar
Magee, R. M., Jones, L. D. & Rees, H. H. (1996). Ecdysteroids in relation to adult development and reproduction in female Rhipicephalus appendiculatus (Acari: Ixodidae). Archives of Insect Biochemistry and Physiology 31, 197–206.3.0.CO;2-X>CrossRefGoogle Scholar
Mangelsdorf, D. J. & Evans, R. M. (1995). The RXR heterodimers and orphan receptors. Cell 83, 841–850.CrossRefGoogle ScholarPubMed
Mango, C., Odhiambo, T. R. & Galun, R. (1976). Ecdysone and the super tick. Nature 260, 318–319.CrossRefGoogle ScholarPubMed
Mao, H. & Kaufman, W. R. (1998). DNA binding properties of the ecdysteroid receptor in the salivary gland of the female ixodid tick, Amblyomma hebraeum. Insect Biochemistry and Molecular Biology 28, 947–957.CrossRefGoogle ScholarPubMed
Mao, H. & Kaufman, W. R. (1999). Profile of the ecdysteroid hormone and its receptor in the salivary gland of the adult female tick, Amblyomma hebraeum. Insect Biochemistry and Molecular Biology 29, 33–42.CrossRefGoogle ScholarPubMed
Mao, H., McBlain, W. A. & Kaufman, W. R. (1995). Some properties of the ecdysteroid receptor in the salivary gland of the ixodid tick, Amblyomma hebraeum. General and Comparative Endocrinology 99, 340–348.CrossRefGoogle ScholarPubMed
Marzouk, A. S., Mohamed, F. S. A. & Khalil, G. M. (1985). Neurohemal–endocrine organs in the camel tick, Hyalomma dromedarii (Acari: Ixodoidea: Ixodidae). Journal of Medical Entomology 22, 385–391.CrossRefGoogle Scholar
McSwain, J. L., Tucker, J. S., Essenberg, R. C. & Sauer, J. R. (1989). Brain factor induced formation of inositol phosphates in tick salivary glands. Insect Biochemistry 19, 343–349.CrossRefGoogle Scholar
Nässel, D. R. (1996). Neuropeptides, amines, and amino acids in an elementary insect ganglion: functional and chemical anatomy of the unfused abdominal ganglion. Progress in Neurobiology 48, 325–420.CrossRefGoogle Scholar
Neese, P. A., Sonenshine, D. E., Kallapur, V. L., Apperson, C. S. & Roe, R. M. (2000). Absence of insect juvenile hormones in the American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae), and in Ornithodoros parkeri Cooley (Acari: Argasidae). Journal of Insect Physiology 46, 477–490.CrossRefGoogle Scholar
Neupert, S., Predel, R., Russell, W. K., et al. (2005). Identification of tick periviscerokinin, the first neurohormone of Ixodidae: single cell analysis by means of MALDI-TOF/TOF mass spectrometry. Biochemical and Biophysical Research Communications 338, 1860–1864.CrossRefGoogle ScholarPubMed
Obenchain, F. D. & Mango, C. K. A. (1980). Effects of exogenous ecdysteroids and juvenile hormones on female reproductive development in Ornithodoros p. porcinus. American Zoologist 20, Abstract No. 1192.Google Scholar
Obenchain, F. D. & Oliver, J. H. Jr (1975). Neurosecretory system of the American dog tick, Dermacentor variabilis (Acari: Ixodidae). II. Distribution of secretory cell types, axonal pathways and putative nerohemal–neuroendocrine associations: comparative histological and anatomical implications. Journal of Morphology 145, 269–294.CrossRefGoogle ScholarPubMed
Ogihara, K. (2003). Ecdysteroid hormone titer and expression of ecdysone receptor mRNA as related to vitellogenesis in the soft tick, Ornothodoros moubata (Acari: Argasidae). Unpublished M.Ag.Sci. thesis, University of Tsukuba, Japan.Google Scholar
Oliver, J. H. Jr (1986 a). Relationship among feeding, gametogenesis, mating and syngamy in ticks. In Host Regulated Development Mechanisms in Vector Arthropods, eds. Borovsky, D. & Spielman, A., pp. 93–99. Vero Beach, FL: University of Florida Press.Google Scholar
Oliver, J. H. Jr (1986 b). Induction of oogenesis and oviposition in ticks. In Morphology, Physiology and Behavioural Biology of Ticks, eds. Sauer, J. R. & Hair, J. A., pp. 233–247. Chichester, UK: Ellis Horwood.Google Scholar
Oliver, J. H. Jr & Dotson, E. M. (1993). Hormonal control of molting and reproduction in ticks. American Zoologist 33, 384–396.CrossRefGoogle Scholar
Oliver, J. H. Jr, Zhu, X. X., Vogel, G. N. & Dotson, E. M. (1992). Role of synganglion in oogenesis of the tick Ornithodoros parkeri (Acari: Argasidae). Journal of Parasitology 78, 93–98.CrossRefGoogle Scholar
Palmer, M. J., Harmon, M. A. & Laudet, V. (1999). Characterization of EcR and RXR homologues in the Ixodid tick, Amblyomma americanum (L.). American Zoologist 39, 747–757.CrossRefGoogle Scholar
Palmer, M. J., Warren, J. T., Jin, X., Guo, X. & Gilbert, L. I. (2002). Developmental profiles of ecdysteroids, ecdysteroid receptor mRNAs and DNA binding properties of ecdysteroid receptors in the ixodid tick Amblyomma americanum (L.). Insect Biochemistry and Molecular Biology 32, 465–476.CrossRefGoogle Scholar
Pound, J. M. & Oliver, J. H. Jr (1979). Juvenile hormone: evidence of its role in the reproduction of ticks. Science 206, 355–357.CrossRefGoogle ScholarPubMed
Pound, J. M. & Oliver, J. H. Jr (1982). Synganglial and neurosecretory morphology of female Ornithodoros parkeri (Cooley) (Acari: Argasidae). Journal of Morphology 173, 159–177.CrossRefGoogle Scholar
Pound, J. M., Oliver, J. H. Jr & Andrews, R. H. (1984). Induction of apolysis and cuticle formation in female Ornithodoros parkeri (Acari: Argasidae) by hemocoelic injections of β-ecdysone. Journal of Medical Entomology 21, 612–614.CrossRefGoogle ScholarPubMed
Rees, H. H. (2004). Hormonal control of tick development and reproduction. Parasitology 129, S127–S143.CrossRefGoogle ScholarPubMed
Rees, H. H. & Isaac, R. E. (1984). Biosynthesis of ovarian ecdysteroid phosphates and their metabolic fate during embryogenesis in Schistocerca gregaria. In Biosynthesis, Metabolism and Mode of Action of Invertebrate Hormones, eds. Hoffmann, J. & Porchet, M., pp. 181–195. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Riddiford, L. M. (1996). Juvenile hormone: the status of its ‘status quo’ action. Archives of Insect Biochemistry and Physiology 32, 271–286.3.0.CO;2-W>CrossRefGoogle Scholar
Riddiford, L. M., Cherbas, P. & Truman, J. W. (2001). Ecdysone receptors and their biological actions. Vitamins and Hormones – Advances in Research and Applications 60, 1–73.Google Scholar
Robinson, P. D., Morgan, E. D., Wilson, Y. D. & Lafont, R. (1987). The metabolism of ingested and injected [3H]ecdysone by final instar larvae of Heliothis armigera. Physiological Entomology 12, 321–330.CrossRefGoogle Scholar
Rosell, R. & Coons, L. B. (1991). Purification and partial characterization of vitellin from the eggs of the hard tick Dermacentor variabilis. Insect Biochemistry 21, 871–885.CrossRefGoogle Scholar
Rosell, R. & Coons, L. B. (1992). The role of the fat body, midgut and ovary in vitellogenin production and vitellogenesis in the female tick Dermacentor variabilis. International Journal for Parasitology 22, 341–349.CrossRefGoogle ScholarPubMed
Rosell-Davis, R. & Coons, L. B. (1989). Relationship between feeding, mating, vitellogenin production and vitellogenesis in tick Dermacentor variabilis. Experimental and Applied Acarology 7, 95–105.CrossRefGoogle ScholarPubMed
Sankhon, N., Lockey, T., Rosell, R. C., Rothschild, M. & Coons, L. (1999). Effect of methoprene and 20-hydroxyecdysone on vitellogenin production in cultured fat bodies and backless explants from unfed female Dermacentor variabilis. Journal of Insect Physiology 45, 755–761.CrossRefGoogle ScholarPubMed
Sannasi, A. & Subramoniam, T. (1972). Hormonal rupture of larval diapause in the tick Rhipicephalus sanguineus (Lat.). Experientia 28, 666–667.CrossRefGoogle Scholar
Sauer, J. R., Essenberg, R. C. & Bowman, A. S. (2000). Salivary glands in ixodid ticks: control and mechanism of secretion. Journal of Insect Physiology 46, 1069–1078.CrossRefGoogle ScholarPubMed
Sauer, J. R., McSwain, J. L., Bowman, A. S. & Essenberg, R. C. (1995). Tick salivary gland physiology. Annual Review of Entomology 40, 245–267.CrossRefGoogle ScholarPubMed
Schriefer, M. E. (1991). Vitellogenesis in Hyalomma dromedarii (Acari: Ixodidae): a model for analysis of endocrine regulation in ixodid ticks. Unpublished Ph.D. thesis, Old Dominion University & East Virginia Medical School, Norfolk, VA.
Shanbaky, N. M. & Khalil, G. M. (1975). The sub-genus Persicargus (Ixodoidea: Argasidae: Argas). XⅫ. The effect of feeding on hormonal control of egg development in Argas (Persicargas) arboreus. Experimental Parasitology 37, 361–366.CrossRefGoogle Scholar
Shanbaky, N. M., Mansour, M. M., Main, A. J., El-Said, A. & Helmy, N. (1990). Hormonal control of vitellogenesis in Argas (Argas) hermanni (Acari: Argasidae). Journal of Medical Entomology 27, 968–974.CrossRefGoogle Scholar
Shepherd, J., Oliver, J. H. Jr & Hall, J. D. (1982). A polypeptide from male accessory glands which triggers maturation of tick spermatozoa. International Journal of Invertebrate Reproduction 5, 129–137.CrossRefGoogle Scholar
Slinger, A. J. & Isaac, R. E. (1988). Ecdysteroid titers during embryogenesis of the cockroach, Periplaneta americana. Journal of Insect Physiology 34, 1119–1125.CrossRefGoogle Scholar
Smith, W. A., Varghese, A. H., Healy, M. S. & Lou, K. J. (1996). Cyclic AMP is a prerequisite messenger in the action of big PTTH in the prothoracic glands of pupal Manduca sexta. Insect Biochemistry and Molecular Biology 26, 161–170.CrossRefGoogle Scholar
Soller, M., Bownes, M. & Kubli, E. (1999). Control of oocyte maturation in sexually mature Drosophila females. Developmental Biology 208, 337–351.CrossRefGoogle ScholarPubMed
Solomon, K. R., Mango, C. K. A. & Obenchain, F. D. (1982). Endocrine mechanisms in ticks: effects of insect hormones and their mimics on development and reproduction. In Physiology of Ticks, eds. Obenchain, F. D. & Galun, R., pp. 399–438. Oxford, UK: Pergamon Press.Google Scholar
Sonenshine, D. E. (1986). Tick pheromones: an overview. In Morphology, Physiology, and Behavioural Biology of Ticks, eds. Sauer, J. R. & Hair, J. A., pp. 342–360. Chichester, UK: Ellis Horwood.Google Scholar
Sonenshine, D. E. (1991). Biology of Ticks, vol. 1. Oxford, UK: Oxford University Press.Google Scholar
Sonenshine, D. E., Roe, R. M., Venkatesh, K., et al. (1989). Biochemical evidence of the occurrence of a juvenoid in ixodid ticks. In Host Regulated Developmental Mechanisms in Vector Arthropods, eds. Borovsky, D. & Spielman, A., pp. 9–17. Vero Beach, FL: University of Florida Press.Google Scholar
Stauffer, A. & Connat, J.-L. (1990). Anteroposterior gradient during nymphal–adult moulting cycle of the tropical bont tick, Amblyomma variegatum (Acarina: Ixodidae): correlations between ecdysteroid titers and integument structure. Roux's Archives of Developmental Biology 198, 309–321.CrossRefGoogle Scholar
Strey, O. F., Teel, P. D. & Longnecker, M. T. (2001). Effects of pyriproxyfen on off-host water-balance and survival of adult lone star ticks (Acari: Ixodidae). Journal of Medical Entomology 38, 589–595.CrossRefGoogle Scholar
Taneja-Bageshwar, S., Strey, A., Zubrzak, P., Pietrantonio, P. V. & Nachman, R. J. (2006). Comparative structure–activity analysis of insect kinin core analogs on recombinant kinin receptors from southern cattle tick Boophilus microplus (Acari: Ixodidae) and mosquito Aedes aegypti (Diptera: Culicidae). Archives of Insect Biochemistry and Physiology 62, 128–140.CrossRefGoogle Scholar
Taylor, D., Chinzei, Y., Ito, K., Higuchi, N. & Ando, K. (1991 a). Stimulation of vitellogenesis by pyrethroids in mated and virgin female adults, and fourth instar females of Ornithodoros moubata. Journal of Medical Entomology 28, 322–329.CrossRefGoogle ScholarPubMed
Taylor, D., Chinzei, Y., Miura, K. & Ando, K. (1991 b). Vitellogenin synthesis, processing and hormonal regulation in the tick, Ornithodoros parkeri (Acari: Argasidae). Insect Biochemistry 21, 723–733.CrossRefGoogle Scholar
Taylor, D., Nakajima, Y. & Chinzei, Y. (2000). Ecdysteroids and vitellogenesis in the soft tick, Ornithodoros moubata (Acari: Argasidae). In Proceedings of the 3rd International Conference on Ticks and Tick-Borne Pathogens: Into the 21st Century, eds. Kazimírova, M., Labuda, M. & Nuttall, P. A., pp. 223–227.Google Scholar
Taylor, D., Sonenshine, D. E. & Phillips, J. S. (1991 c). Ecdysteroids as a component of the genital sex pheromone in two species of hard ticks, Dermacentor variabilis (Say) and Dermacentor andersoni Stiles (Acari: Ixodidae). Experimental and Applied Acarology 12, 275–296.CrossRefGoogle Scholar
Thompson, D. M., Khalil, S. M. S., Jeffers, L. A., et al. (2005). In vivo role of 20-hydroxyecdysone in the regulation of the vitellogenin mRNA and egg development in the American dog tick, Dermacentor variabilis (Say). Journal of Insect Physiology 51, 1105–1116.CrossRefGoogle Scholar
Thummel, C. S. (2001). Molecular mechanisms of developmental timing in C. elegans and Drosophila. Developmental Cell 1, 453–465.CrossRefGoogle Scholar
Thummel, C. S. (2002). Ecdysone-regulated puff genes 2000. Insect Biochemistry and Molecular Biology 32, 113–120.CrossRefGoogle ScholarPubMed
Tomaschko, K.-H. (1994). Ecdysteroids from Pycnogonium litorale (Arthropoda, Pantopoda) act as chemical defense against Carcinus maenas (Crustacea, Decapoda). Journal of Chemical Ecology 20, 1445–1455.CrossRefGoogle Scholar
Venkatesh, K., Roe, R. M., Apperson, C. S., et al. (1990). Metabolism of juvenile hormone during adult development of Dermacentor variabilis (Acari: Ixodidae). Journal of Medical Entomology 27, 36–42.CrossRefGoogle Scholar
Wainwright, G. & Rees, H. H. (2001). Hormonal regulation of reproductive development in crustaceans. In Enviroment and Animal Development, eds. Atkinson, D. & Thorndyke, M., pp. 71–84. Oxford, UK: Bios.Google Scholar
Weiss, B. L. & Kaufman, W. R. (2001). The relationship between ‘critical weight’ and 20-hydroxyecdysone in the female ixodid tick, Amblyomma hebraeum. Journal of Insect Physiology 47, 1261–1267.CrossRefGoogle ScholarPubMed
Whitehead, D. L., Osir, E. W., Obenchain, F. D. & Thomas, L. S. (1986). Evidence for the presence of ecdysteroids and preliminary characterization of their carrier proteins in the eggs of the brown ear tick Rhipicephalus appendiculatus (Neumann). Insect Biochemistry 19, 112–133.Google Scholar
Wigglesworth, K. P., Lewis, D. & Rees, H. H. (1985). Ecdysteroid titre and metabolism of novel apolar derivatives in adult female Boophilus microplus (Ixodidae). Archives of Insect Biochemisty and Physiology 2, 39–54.CrossRefGoogle Scholar
Wright, J. E. (1969). Hormonal temination of larval diapause in Dermacentor albipictus. Science 163, 390–391.CrossRefGoogle Scholar
Zhou, J., Liao, M., Hatta, T., et al. (2006). Identification of a follistatin-related protein from the tick Haemophysalis longicornis and its effect on tick oviposition. Gene 372, 191–198.CrossRefGoogle Scholar
Zhu, X. X. & Oliver, J. H. Jr (2001). Cockroach allatostatin-like immunoreactivity in the synganglion (Acari: Ixodidae). Experimental and Applied Acarology 25, 1005–1013.CrossRefGoogle Scholar
Zhu, X. X., Oliver, J. H. Jr & Dotson, E. M. (1991 a). Immunocytochemical localization of an insulin-like substance in the synganglion of the tick, Ornithodoros parkeri (Acari: Argasidae). Experimental and Applied Acarology 13, 153–159.CrossRefGoogle Scholar
Zhu, X. X., Oliver, J. H. Jr & Dotson, E. M. (1991 b). Epidermis as the source of ecdysone in an argasid tick. Proceedings of the National Academy of Sciences of the USA 88, 3744–3747.CrossRefGoogle Scholar
Zhu, X. X., Oliver, J. H. Jr, Dotson, E. M. & Ren, H. L. (1994). Correlation between ecdysteroids and cuticulogenesis in nymphs of the tick Ornithodoros parkeri (Acari: Argasidae). Journal of Medical Entomology 31, 479–485.CrossRefGoogle Scholar
Zwijsen, A., Blockx, H., Arnhem, W., et al. (1994). Characterization of a rat C6 glioma-secreted follistatin- related protein (FRP): cloning and sequence of the human homologue. European Journal of Biochemistry 225, 937–946.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×