Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Print publication year: 2008
  • Online publication date: August 2009

17 - Analysing and predicting the occurrence of ticks and tick-borne diseases using GIS



For many years, scientific research has considered the relationships between the landscape and human health. Increasing rates of environmental changes are dramatically altering patterns of human health at the community, regional and global scales. The emergence of tick-borne diseases (TBD) illustrates the impact that environmental changes can have on human health. Integration of modern geoinformation technologies into landscape epidemiology can contribute significantly to the development and implementation of new disease-surveillance tools. The theory of landscape epidemiology offers the opportunity to use the landscape as a key to the identification of the spatial and temporal distribution of disease risk. Key environmental elements – including elevation, temperature, rainfall and humidity – influence the presence, development, activity and longevity of pathogens, vectors and zoonotic reservoirs of infection, and their interactions with humans (Meade, Florin & Gesler, 1988). The same environmental variables influence distribution of vegetation type as landscape elements and patterns of disease. Remote sensing (RS) from aircraft and satellites can be used to describe landscape elements that influence the patterns and prevalence of disease. In addition, geographical information systems (GIS) provide tools for modelling spatially their occurrence in space and time.

Ticks are ideally suited to GIS and RS applications owing to their close ties with the ecosystem. This relationship is determined by: (1) the type of host–parasite association (most important vector species are three-host ticks); (2) specific requirements of the microclimate; and (3) dependence on clearly defined types of plant associations which both reflect the microclimatic conditions of a habitat occupied by ticks, and also influence them.

Balát, F. & Rosický, B. (1954). Birds in lowland forests, their role and importance for the existence of natural foci of diseases. československá Parasitologie 1, 22–44. (In Czech.)
Baptista, S., Quaresma, A., Aires, T., et al. (2004). Lyme borreliosis spirochetes in questing ticks from mainland Portugal. International Journal of Medical Microbiology Suppl. 293, 109–116.
Barnes, C. M. (1991). An historical perspective on the applications of remote sensing to public health. Preventive Veterinary Medicine 11, 163–166.
Beck, L. R., Lobitz, B. M. & Wood, B. L. (2000). Remote sensing and human health: new sensors and new opportunities. Emerging Infectious Diseases 6, 217–227.
Benda, R. (1958). The common tick Ixodes ricinus L. as a reservoir and vector of tick-borne encephalitis. I. Survival of the virus (strain B 3) during the development of the tick under laboratory conditions. Journal of Hygiene, Epidemiology, Microbiology and Immunology 2, 314–330.
Bithell, J. F. (1990). An application of density estimation to geographical epidemiology. Statistics in Medicine 9, 691–701.
Blaškovič, D. (1967). Studies on tick-borne encephalitis. Bulletin of the World Health Organization 36 (Suppl. 1), 1–95.
Brownstein, J. S., Holford, T. R. & Fish, D. (2003). A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environmental Health Perspectives 111, 1152–1157.
Carey, A. B., Mclean, R. G. & Maupin, G. O. (1980). The structure of a Colorado tick fever ecosystem. Ecological Monographs 50, 131–151.
CDC (Centers for Disease Control and Prevention) (1994). Addressing Emerging Infectious Disease Threats: A Strategy for the United States. Atlanta, GA: US Department of Health and Human Services, CDC.
CDC (Centers for Disease Control and Prevention) (1998). Preventing Emerging Infectious Diseases: A Strategy for the 21st Century. Atlanta, GA: US Department of Health and Human Services, CDC.
Chaput, E. K., Meek, J. I. & Heimer, R. (2002). Spatial analysis of human granulocytic ehrlichiosis near Lyme, Connecticut. Emerging Infectious Diseases 8, 943–948.
Chemini, C. & Rizzoli, A. (2003). Land use change and biodiversity conservation in the Alps. Journal of Mountain Ecology (Suppl.) 7, 1–7.
Cliff, A. D. & Haggett, P. (1988). Atlas of the Distribution of Diseases: Analytical Approaches to Epidemiological Data. Oxford, UK: Blackwell Scientific Publications.
Cooper, J. W. & Houle, J. U. (1991). Modelling disease vector habitats using thematic mapper data: identifying Dermacentor variabilis habitats in Orange County, North Carolina. Preventive Veterinary Medicine 11, 353–354.
Cumming, G. S. (2000 a). Using habitat models to map diversity: pan-African species richness of ticks (Acari: Ixodida). Journal of Biogeography27, 425–440.
Cumming, G. S. (2000 b). Using between-model comparisons to fine-tune linear models of species ranges. Journal of Biogeography27, 441–455.
Cumming, G. S. (2002). Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology 83, 255–268.
Dale, M. R. T., Dixon, P., Fortin, M.-J., et al. (2002). Conceptual and mathematical relationships among methods for spatial analysis. Ecography 25, 558–577.
Daniel, M. & Dusbábek, F. (1994). Micrometeorological and microhabitat factors affecting maintenance and dissemination of tick-borne diseases in the environment. In Ecological Dynamics of Tick-Borne Zoonoses eds. Sonenshine, D. E. & Mather, T. N., pp. 91–138. Oxford, UK: Oxford University Press.
Daniel, M. & Kolář, J. (1990). Using satellite data to forecast the occurence of the common tick Ixodes ricinus (L.). Journal of Hygiene, Epidemiology, Microbiology and Immunology 34, 243–252.
Daniel, M. & Kříž, B. (2002). Tick-Borne Encephalitis in the Czech Republic, vol. 1, Predictive Maps of Ixodes ricinus Tick High-Occurrence Habitats and a Tick-Borne Encephalitis Risk Assessment in Czech Regions; vol. 2, Maps of Tick-Borne Encephalitis Incidence in the Czech Republic in 1971–2000, Project WHO/EC Climate Change and Adaptation Strategies for Human Health in Europe, EVK-2-2000-0070. Prague: National Institute of Public Health.
Daniel, M. & Rosický, B. (1989). Medical Entomology and Environment. Prague: Academia. (In Czech.)
Daniel, M., Danielová, V., Kříž, B. & Beneš, Č. (2006). Tick-borne encephalitis. In Climate Change and Adaptation Strategies for Human Health, eds. Menne, B. & Ebi, K. L., pp. 189–205. Darmstadt, Germany: Steinkopff.
Daniel, M., Kolář, J. & Zeman, P. (2004). GIS tools for tick and tick-borne disease occurrence. Parasitology 129 (Suppl.), S329–S352.
Daniel, M., Kolář, J., Zeman, P., Pavelka, K. & Sádlo, J. (1998). Predictive map of Ixodes ricinus high-incidence habitats and a tick-borne encephalitis risk assessment using satellite data. Experimental and Applied Acarology 22, 417–433.
Daniel, M., Kolář, J., Zeman, P., Pavelka, K. & Sádlo, J. (1999). Tick-borne encephalitis and Lyme borreliosis: comparison of habitat risk assessments using satellite data. Central European Journal of Public Health7, 35–39.
Danielová, V., Holubová, J. & Daniel, M. (2002 a). Tick-borne encephalitis virus prevalence in Ixodes ricinus ticks collected in high risk habitats of the South-Bohemian region of the Czech Republic. Experimental and Applied Acarology 26, 145–151.
Danielová, V., Holubová, J., Pejčoch, M. & Daniel, M. (2002 b). Potential significance of transovarial transmission in the circulation of tick-borne encephalitis virus. Folia Parasitologia 49, 323–325.
Garine-Wichatitsky, M. (2000). Assessing infestation risk by vectors: spatial and temporal distribution of African ticks at the scale of a landscape. Annals of the New York Academy of Sciences 916, 223–232.
Diamond, I. (1992). Population counts in small areas. In Geographical and Environmental Epidemiology: Methods for Small-Area Studies, eds. Elliot, P., Cuzick, J., English, D. & Stern, R., pp. 98–105. Oxford, UK: Oxford University Press.
Diggle, P. J. (1983). Statistical Analysis of Spatial Point Patterns. London: Academic Press.
Dister, S. W., Fish, D., Bros, S., Frank, D. H. & Wood, B. L. (1997). Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. American Journal of Tropical Medicine and Hygiene57, 687–692.
Duffy, D. C., Clark, D. D., Campbell, , S. R., et al. (1994). Landscape patterns of abundance of Ixodes scapularis (Acari: Ixodidae) on Shelter Island, New York. Journal of Medical Entomology31, 875–879.
Eisen, R. J., Eisen, L. & Lane, R. S. (2005). Remote sensing (Normalized Difference Vegetation Index) classification of risk versus minimal risk habitats for human exposure to Ixodes pacificus (Acari: Ixodidae) nymphs in Mendocino County, California. Journal of Medical Entomology42, 75–81.
Estrada-Peña, A. (1998). Geostatistics and remote sensing as predictive tools of tick distribution: a cokriging system to estimate Ixodes scapularis (Acari: Ixodidae) habitat suitability in the United States and Canada from Advanced Very High Radiometer satellite imagery. Journal of Medical Entomology 35, 989–995.
Estrada-Peña, A. (1999 a). Geostatistics and remote sensing using NOAA–AVHR satellite imagery as predictive tools in tick distribution and habitat suitability estimations for Boophilus microplus (Acari: Ixodidae) in South America. Veterinary Parasitology 81, 73–82.
Estrada-Peña, A. (1999 b). Geostatistics as predictive tools to estimate Ixodes ricinus (Acari: Ixodidae) habitat suitability in the western Palearctic from AVHRR satellite imagery. Experimental and Applied Acarology 23, 337–349.
Estrada-Peña, A. (2001 a). Distribution, abundance, and habitat preferences of Ixodes ricinus (Acari: Ixodidae) in northern Spain. Journal of Medical Entomology38, 361–370.
Estrada-Peña, A. (2001 b). Climate warming and changes in habitat suitability for Boophilus microplus (Acari: Ixodidae) in Central America. Journal of Parasitology87, 978–987.
Estrada-Peña, A. (2002 a). Increasing habitat suitability in the United States for the tick that transmits Lyme disease: a remote sensing approach. Environmental Health Perspectives 110, 635–640.
Estrada-Peña, A. (2002 b). A simulation model for environmental population densities, survival rates and prevalence of Boophilus decoloratus (Acari: Ixodidae) using remotely sensed environmental information. Veterinary Parasitology 104, 51–78.
Estrada-Peña, A. (2003 a). Climate change decreases habitat suitability for some species (Acari: Ixodidae) in South Africa. Onderstepoort Journal of Veterinary Research70, 79–93.
Estrada-Peña, A. (2003 b). The relationships between habitat topology, critical scales of connectivity and tick abundance Ixodes ricinus in a heterogeneous landscape in northern Spain. Ecography 26, 661–671.
Estrada-Peña, A., Acedo, Sánchez C., Quílez, J. & Cacho, Del E. (2005). A retrospective study of climatic suitability for the tick Rhipicephalus (Boophilus) microplus in the Americas. Global Ecology and Biogeography 14, 565–573.
Foley, J. E., Queen, E. V., Sacks, B. & Foley, P. (2005). GIS-facilitated spatial epidemiology of tick-borne diseases in coyotes (Canis latrans) in northern and coastal California. Comparative Immunology, Microbiology and Infectious Diseases 28, 197–212.
Frank, C., Fix, A. D., Pena, C. A. & Strickland, G. T. (2002). Mapping Lyme disease incidence for diagnostic and preventive decisions, Maryland. Emerging Infectious Diseases 8, 427–429.
Gern, L., Estrada-Peña, A., Frandsen, F., et al. (1998). European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralblatt für Bakteriologie 287, 196–204.
Gilot, B. (1985). Bases biologiques, écologiques et cartographiques pour l'étude des maladies transmises par les tiques (Ixodidae et Argasidae) dans les Alpes Françaises et leur avant-pays. Unpublished Ph.D. thesis, University of Grenoble, France.
Gilot, B., Pautou, G. & Lachet, B. (1981). La cartographie des populations de tiques exophiles à visée épidemiologique: application à la fièvre boutonneuse méditerranéenne essai à 1/200000 dans la basse valleée du Rhône. Documents de Cartographie Ecologique (Grenoble) 34, 103–111.
Gilot, B., Pautou, G. & Moncada, E. (1975). L'analyse de la végétation appliqué à la détection des populations de tiques exophiles dans le Sud-Est de la France: l'example d'Ixodes ricinus (Linné, 1758). Acta Tropica 32, 340–347.
Gilot, B., Pautou, G., Moncada, E., Lachet, B. & Christin, J. G. (1979). La cartographie des populations de tiques exophiles par le biaias de la végétation: bases écologiques, intérêt épidemiologique. Documents de Cartographie Ecologique (Grenoble) 22, 65–80.
Glass, G. E., Amerasinghe, F. P., Morgan, J. M. & Scott, T. W. (1994). Predicting Ixodes scapularis abundance on white-tailed deer using geographic information systems. American Journal of Tropical Medicine and Hygiene51, 538–544.
Glass, G. E., Schwartz, B. S., Morgan, J. M., et al. (1995). Environmental risk factors for Lyme disease identified with Geographic Information Systems. American Journal of Public Health85, 944–948.
Glavanakov, S., White, D. J., Caraco, T., et al. (2001). Lyme disease in New York State: spatial pattern at a regional scale. American Journal of Tropical Medicine and Hygiene65, 538–554.
Gray, J. S., Kahl, O., Robertson, J. N., et al. (1998). Lyme borreliosis habitat assessment. Zentralblatt für Bakteriologie 287, 211–228.
Green, R. M., Rogers, D. J. & Randolph, S. E. (2000). The use of satellite imagery to predict foci of tick-borne encephalitis. In Proceedings of the 3rd International Conference Ticks and Tick-Borne Pathogens: Into the 21st Century, eds. Kazimírová, M., Labuda, M. & Nuttall, P.., pp. 209–213.
Guerra, M., Walker, E., Jones, C., et al. (2002). Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerging Infectious Diseases 8, 289–297.
Guisan, A. & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135, 147–186.
Hay, S. L, Randolph, S. E. & Rogers, D. J. (eds.) (2000). Remote sensing and Geographical Information Systems in epidemiology. Advances in Parasitology 47, 1–357.
Hejný, S. & Rosický, B. (1965). Beziehungen der Encephalitis zu den natürlichen Pflanzengesellschaften. In Biosoziologie, ed. Tuexen, R., pp. 341–347. The Hague, Netherlands: Junk Verlag.
Hugh-Jones, M. (1989). Applications of remote sensing to the identification of the habitats of parasites and disease vectors. Parasitology Today 5, 244–251.
Hugh-Jones, M. (ed.) (1991). Applications of remote sensing to epidemiology and parasitology. Preventive Veterinary Medicine 11, 155–376.
Hugh-Jones, M. E., Barre, N., Nelson, G., et al. (1988). Remote recognition of Amblyomma variegatum habitats in Guadeloupe using LANDSAT-TM imagery. Acta Veterinaria Scandinavica (Suppl.) 84, 259–261.
Hugh-Jones, M., Barre, N., Nelson, G., et al. (1992). Landsat–TM identification of Amblyomma variegatum (Acari: Ixodidae) habitats in Guadeloupe. Remote Sensing of Environment 40, 43–55.
Hungerford, L. L. (1991). Use of spatial statistics to identify and test significance in geographic disease patterns. Preventive Veterinary Medicine 11, 273–282.
Immuno, (1997). Tick-Borne Encephalitis (TBE) and its Immunoprophylaxis. Vienna: Immuno A. G.
Isaaks, E. H. & Srivastava, R. M. (1989). Applied Geostatistics. Oxford, UK: Oxford University Press.
Jones, C. G., Ostfeld, R. S., Richard, M. P., Schauber, E. M. & Wolff, J. O. (1998). Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279, 1023–1026.
Jones, L. D., Davies, C. R., Steele, G. M. & Nuttall, P. A. (1987). A novel mode of arbovirus transmission involving a non-viremic host. Science 237, 775–777.
Journel, A. G. & Huibregts, C. J. (1978). Mining Geostatistics. New York: Academic Press.
Kelsall, J. E. & Diggle, P. J. (1995). Non-parametric estimation of spatial variation in relative risk. Statistics in Medicine 14, 2335–2342.
Kitron, U. & Kazmierczak, J. J. (1997). Spatial analysis of the distribution of Lyme disease in Wisconsin. American Journal of Epidemiology145, 558–566.
Kitron, U. & Mannelli, A. (1994). Modeling the ecological dynamics of tick-borne zoonoses. In Ecological Dynamics of Tick-Borne Zoonoses, eds. Sonenshine, D. E. & Mather, T. N., pp. 198–239. Oxford, UK: Oxford University Press.
Kitron, U., Bouseman, J. K. & Jones, C. J. (1991). Use of the ARC/INFO GIS to study the distribution of Lyme disease ticks in an Illinois county. Preventive Veterinary Medicine 11, 243–248.
Kitron, U., Jones, C. J., Houseman, J. K., Nelson, J. A. & Baumgartner, D. L. (1992). Spatial analysis of the distribution of Ixodes dammini (Acari: Ixodidae) on white-tailed deer in Ogle County, Illinois. Journal of Medical Entomology29, 259–266.
Kolonin, G. V. (1978). World Distribution of 1xodid Ticks (Genus Haemaphysalis). Moscow, USSR: Nauka. (In Russian.)
Kolonin, G. V. (1981). World Distribution of Ixodid Ticks (Genus Ixodes). Moscow, USSR: Nauka. (In Russian.)
Kolonin, G. V. (1983). World Distribution of Ixodid Ticks (Genera Hyalomma, Aponomma, Amblyomma). Moscow, USSR: Nauka. (In Russian.)
Kolonin, G. V. (1984). World Distribution of Ixodid Ticks (Genera Dermacentor, Anocentor, Cosmiomma, Dermacentonomma, Nosomma, Rhipicentor, Rhipicephalus, Boophilus, Margaropus, Anomalohimalaya). Moscow, USSR: Nauka. (In Russian.)
Korenberg, E. I. (1973). Methodological principles of mapping the occurrence of Ixodid ticks. In Proceedings of 3rd International Congress of Acarology, eds. Daniel, M. & Rosický, B., pp. 575–577.
Korenberg, E. I. (1983). What Is a Natural Focus?Moscow, USSR: Znanie. (In Russian.)
Korenberg, E. I. & Kovalevsky, J. V. (1981). Regional classification of the tick-borne encephalitis area of distribution. Scientific and TechnicalResults, Series Medical Geography 11, 1–148. (In Russian.)
Krejcir, P. (2000). A maximum likelihood estimator of an inhomogeneous Poisson point process intensity using beta splines. Kybernetika 36, 455–464.
Kucheruk, V. V. & Rosický, B. (1984). Natural focality of infectious diseases: basic terms and their explanation. Medical Parasitology and Parasitological Diseases 2, 7–16. (In Russian.)
Kulldorff, M. & Nagarwalla, N. (1995). Spatial disease clusters: detection and inference. Statistics in Medicine 14, 799–810.
Kuzikov, I. V., Korenberg, E. I., Kovalevsky, J. V. & Rodman, L. S. (1982). The principles of average scale mapping of distribution of the ixodid ticks on the basis of aerophoto-materials. Zoologiocheskii Zhurnal 61, 1802–1814. (In Russian.)
Lam, N. S. (1983). Spatial interpolation methods: a review. American Geographer 10, 129–149.
Lawson, A. B. (2001). Statistical Methods in Spatial Epidemiology. Chichester, UK: John Wiley.
Lawson, A. B. & Williams, F. L. R. (1993). Applications of extraction mapping in environmental epidemiology. Statistics in Medicine 12, 1249–1258.
Lawson, A. B., Biggeri, A., Böhning, D., et al. (1999). Disease Mapping and Risk Assessment for Public Health. Chichester, UK: John Wiley.
Lindgren, E. & Jaenson, T. G. T. (2006). Lyme borreliosis in Europe: influences of climate and climate change, epidemiology, ecology and adaptation measures. In Climate Change and Adaptation Strategies for Human Health, eds. Menne, B. & Ebi, K. L., pp. 157–188. Darmstadt, Germany: Steinkopff.
Martyn, K. P. (1988). Provisional Atlas of the Ticks (Ixodoidea) of the British Isles. Huntingdon, UK: Institute of Terrestrial Ecology.
Meade, M. S., Florin, J. W. & Gesler, W. M. (1988). Medical Geography. New York: Guilford Press.
Menne, B. & Ebi, K. L. (eds.) (2006). Climate Change and Adaptation Strategies for Human Health. Darmstadt, Germany: Steinkopff.
Merler, S., Furlanello, C., Chemini, C. & Nicolini, G. (1996). Classification tree methods for analysis of mesoscale distribution of Ixodes ricinus (Acari: Ixodidae) in Trentino, Italian Alps. Journal of Medical Entomology33, 888–893.
Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrica 37, 17–23.
Nicholson, M. C. & Mather, T. N. (1996). Methods for evaluating Lyme disease risk using geographic information systems and geospatial analysis. Journal of Medical Entomology33, 711–720.
Norval, R. A. I., Perry, B. D., Kruska, R. & Kundert, K. (1991). The use of climate data interpolation in estimating the distribution of Amblyomma variegatum in Africa. Preventive Veterinary Medicine 11, 365–366.
Connell, O' S., Granström, M., Gray, J. S. & Stanek, G. (1998). Epidemiology of European Lyme borreliosis. Zentralblatt für Bakteriologie 287, 229–240.
Oden, N. (1995). Adjusting Moran's I for population density. Statistics in Medicine 14, 17–26.
Olwoch, J. M., Rautenbach, C. J., W., Erasmus, B. F. N., Engelbrecht, F. A. & Jaarsveld, A. S. (2003). Simulating tick distributions over sub-Saharan Africa: the use of observed and simulated climate surfaces. Journal of Biogeography30, 1221–1232.
Pavlovsky, E. N. (1939). Natural focality of infectious diseases. Vestnik Akademii Nauk SSSR 10, 98–108. (In Russian.)
Pavlovsky, E. N. (1946). Manual of Human Parasitology, vol. 1. Moscow–Leningrad, USSR: Publishing House of the Academy of Sciences of the USSR. (In Russian.)
Pavlovsky, E. N. (1948). Manual of Human Parasitology, vol. 2. Moscow–Leningrad, USSR: Publishing House of the Academy of Sciences of the USSR. (In Russian.)
Pavlovsky, E. N. (1964). Natural Nidality of Transmissible Diseases in Relation to Landscape Epidemiology of Zooanthroponoses. Moscow, USSR: Peace Publishers.
Perry, B. D., Kruska, R., Lessard, R., Norval, R. A. I. & Kundert, K. (1991). Estimating the distribution and abundance of Rhipicephalus appendiculatus in Africa. Preventive Veterinary Medicine 11, 261–268.
Prokhorov, B. B., Baiborodin, V. N., Vershinina, T. A. & Sotchavy, V. V. (1974). Experience in Ixodid Ticks Mapping on the Territory of Asiatic Russia. Irkutsk, USSR: Academy of Sciences of the USSR. (In Russian.)
Radvan, R., Hanzák, J., Hejný, S., Rehn, F. & Rosický, B. (1960). Demonstration of elementary foci of tick-borne infections on the basis of microbiological, parasitological and biocenological investigations. Journal of Hygiene, Epidemiology, Microbiology and Immunology 4, 81–93.
Rand, P. W., Lacombe, E. H., Smith, R. P., Gensheimer, K. & Dennis, D. T. (1996). Low seroprevalence of human Lyme disease near a focus of high entomologic risk. American Journal of Tropical Medicine and Hygiene55, 160–164.
Randolph, S. E. (1993). Climate, satellite imagery and seasonal abundance of the tick Rhipicephalus appendiculatus in Southern Africa: a new perspective. Medical and Veterinary Entomology 7, 243–258.
Randolph, S. E. (2000). Ticks and tick-borne disease systems in space and from space. In Remote Sensing and Geographical Information Systems in Epidemiology, eds. Baker, J. R., Muller, R. & Rollinson, D., pp. 217–243. London: Academic Press.
Randolph, S. E. & Rogers, D. J. (2000). Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proceedings of the Royal Society of London B 267, 1741–1744.
Randolph, S. E., Miklisová, D., Lysý, D., Rogers, D. J. & Labuda, M. (1999). Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118, 177–186.
Rizzoli, A., Merler, S., Furlanello, C. & Genchi, C. (2002). Geographical Information Systems and bootstrap aggregation (bagging) of tree-based classifiers for Lyme disease risk prediction in Trentino, Italian Alps. Journal of Medical Entomology39, 485–492.
Robinson, T. P. (2000). Spatial statistics and geographical information systems in epidemiology and public health. In Remote Sensing and Geographical Information Systems in Epidemiology, eds. Baker, J. R., Muller, R. & Rollinson, D., pp. 81–127. London: Academic Press.
Rogers, A. (1974). Statistical Analysis of Spatial Dispersion: The Quadrat Method. London: Pion.
Rogers, D. J. (2000). Satellites, space, time and the African trypanosomiases. In Remote Sensing and Geographical Information Systems in Epidemiology, eds. Baker, J. R., Muller, R. & Rollinson, D., pp. 129–171. London: Academic Press.
Rogers, D. J. & Randolph, S. E. (1993). Distribution of tsetse and ticks in Africa, past, present and future. Parasitology Today9, 266–271.
Rosický, B. (1967). Natural foci of diseases. In Infectious Diseases: Their Evolution and Eradication, ed. Cockburn, T. A., pp. 108–126. Springfield, IL: Charles C. Thomas.
Sonenshine, D. E., Peters, A. H. & Stout, J. I. (1972). Rocky Mountain spotted fever in relation to vegetation in the Eastern United States, 1951–1971. American Journal of Epidemiology96, 59–69.
Sutherst, R. W. (2001). The vulnerability of animal and human health to parasites under global change. International Journal for Parasitology31, 933–948.
Sutherst, R. W. & Maywald, G. F. (1985). A computerized system for matching climates in ecology. Agriculture Ecosystems and Environment 13, 281–299.
Thomsen, I. (1991). Population data for small area studies. In Data Requirements and Methods for Analysing Spatial Patterns of Disease in Small Areas, pp. 10–14. Copenhagen: World Health Organization. Available online at
Beurden, A. U. C. J. & Hilferink, M. T. A. (1993). Spatial Analysis with GIS at RIVM: A Background Overview of Spatial Analysis within GIS in research for environment and public health, Report No. 421503002. Bilthoven, the Netherlands: National Institute of Public Health and Environmental Protection.
Vershinina, T. A. (1985). Mapping of Ixodid Ticks' Distribution and Seasonal Activity. Novosibirsk, USSR: Nauka. (In Russian.)
Whittie, P. S., Drane, W. & Aldrich, T. E. (1996). Classification methods for denominators in small areas. Statistics in Medicine 15, 1921–1926.
Zeman, P. (1997). Objective assessment of risk maps of tick-borne encephalitis and Lyme borreliosis based on spatial patterns of located cases. International Journal of Epidemiology26, 1121–1130.
Zeman, P. (1998). Borrelia-infection rates in tick and insect vectors accompanying human risk of acquiring Lyme borreliosis in a highly endemic region in Central Europe. Folia Parasitologica 45, 319–325.
Zeman, P. (1999). A spatial analysis of uncertain occurence of Lyme borreliosis. Zentralblatt für Bakteriologie 289, 717–719.
Zeman, P., Vitkova, V. & Markvart, K. (1990). Joint occurence of tick-borne encephalitis and Lyme borreliosis in the Central Bohemian region of Czechoslovakia. československá Epidemiologie, Mikrobiologie a Imunologie 39, 95–105.