Skip to main content Accessibility help
×
Home
  • Print publication year: 2014
  • Online publication date: August 2014

8 - Adhesion

8.5 References

1 D. A. Jones, Principles and Prevention of Corrosion (New York: Macmillan Publishing Co., 1991).
2 N. Birks, G. H. Meier and F. S. Pettit, Introduction to High Temperature Oxidation of Metals, 2nd edn. (Cambridge: Cambridge University Press, 2006).
3 S. Ebnesajjad, Surface Treatment for Adhesion Bonding (Norwich, NY: William Andrew Publishing, 2006).
4 S. P. Timoshenko, Analysis of bimetal thermostats, J. Opt. Soc. Amer., 11 (1925), 233–256.
5 P. Hancock and R. C. Hurst, The mechanical properties and breakdown of surface oxide films at elevated temperatures, in Advances in Corrosion Science and Technology, eds. R. W. Staehle and M. G. Fontana (New York, Plenum Press, 1974), pp. 1–84.
6 H. E. Evans and R. C. Lobb, Conditions for the initiation of oxide-scale cracking and spallation,Corros. Sci., 24 (1984), 209–222.
7 H. E. Evans, Stress effects in high temperature oxidation of metals, Int. Mater. Rev., 40 (1995), 1–40.
8 D. M. Lipkin, D. R. Clarke and A. G. Evans, Effect of interfacial carbon on adhesion and toughness of gold-sapphire interfaces,Acta Mater., 46 (1998), 4835–4850.
9 E. Schumann, C. Sarioglu, J. R. Blachere, F. S. Pettit and G. H. Meier, High-temperature stress measurements during the oxidation of NiAl, Oxid. Metals, 53 (2000), 259–272.
10 J. L. Smialek, Advances in the oxidation resistance of high-temperature turbine materials, Surf. Interface Anal., 31 (2001), 582–592.
11 J. D. Kiely, T. Yeh and D. A. Bonnell, Evidence for the segregation of sulfur to Ni–alumina interfaces, Surf. Sci. Lett., 393 (1997), L126–L130.
12 A. G. Evans, J. W. Hutchinson and Y. Wei, Interface adhesion: effects of plasticity and segregation, Acta Mater., 47 (1999), 4093–4113.
13 H. E. Evans, Predicting oxide spallation from sulphur-contaminated oxide/metal interfaces,Oxidation Metals, 79 (2013), 3–14.
14 R. Janakiraman, G. H. Meier and F. S. Pettit, The effect of water vapor on the oxidation of alloys that develop alumina scales for protection, Metall. Mater. Trans. A, 30 (1999), 2905–2913.
15 M. C. Maris-Sida, G. H. Meier and F. S. Pettit, Some water vapor effects during the oxidation of alloys that are α-Al2O3 formers, Metall. Mater. Trans. A, 34 (2003), 2609–2619.
16 A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Mechanisms controlling the durability of thermal barrier coatings, Progr. Mater. Sci., 46 (2001), 505–553.
17 M. D. Drory and J. W. Hutchinson, Measurement of the adhesion of a brittle film on a ductile substrate by indentation,Proc. R. Soc. Lond., 452 (1996), 2319–2341.
18 R. A. Handoko, J. L. Beuth, G. H. Meier, F. S. Pettit and M. J. Stiger, Mechanisms for interfacial toughness loss in thermal barrier coating systems, in Durable Surfaces, Proceedings of the Materials Division Symposium on Durable Surfaces, 2000 ASME International Mechanical Engineering Congress and Exposition, Orlando, November, eds. D. R. Mumm, M. Walter, O. Popoola and W. O. Soboyejo (Zurich: Trans Tech Publications, 2000), pp. 165–183.
19 A. Vasinonta and J. L. Beuth, Measurement of interfacial toughness in thermal barrier coating systems by indentation, Eng. Fracture Mech., 68 (2001), 843–860.
20 M. J. Stiger, G. H. Meier, F. S. Pettit, Q. Ma, J. L. Beuth and M. J. Lance, Accelerated cyclic oxidation testing protocols for thermal barrier coatings and alumina-forming alloys and coatings, Mater. Corrosion, 57 (2006), 1–13.
21 Q. Ma, Indentation methods for adhesion measurement in thermal barrier coating systems, Ph.D. Thesis, Carnegie Mellon University, 2004.