Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T15:30:31.251Z Has data issue: false hasContentIssue false

11 - Flame retardant polymer nanocomposites with fullerenes as filler

from Part II - Flame retardancy

Published online by Cambridge University Press:  05 August 2011

Vikas Mittal
Affiliation:
The Petroleum Institute, Abu Dhabi
Get access

Summary

Background

Organic polymers are rapidly and increasingly taking the place of traditional inorganic and metallic materials in various fields owing to their excellent properties, such as low density, resistance to erosion, and ease of processing. However, organic polymers are inherently flammable; their use can cause the occurrence of large fires and, consequently, loss of lives and properties. Thus, enhancing the flame retardancy of these organic polymers is becoming more and more imperative with their wider application, especially in fields such as electronics where high flame retardancy is required.

For traditional flame retardants, on one hand, a very high loading is usually needed to meet flame retardancy demands, which can lead to the deterioration of mechanical properties; on the other hand, utilization of flame retardants can cause environmental problems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kashiwagi, T.Du, F.Winey, K. I.Doulas, J. F.Winey, K. I.Harris, R. H.Shields, J. R.Nanoparticle networks reduce the flammability of polymer nanocompositesNature Materials 4 2005 928CrossRefGoogle ScholarPubMed
Bourbigot, S.Duquesne, S.Leroy, J. M.Modeling of heat transfer of a polypropylene-based intumescent system during combustionJournal of Fire Sciences 17 1999 42CrossRefGoogle Scholar
Pandey, J. K.Reddy, K. R.Kumar, A. P.Singh, R. P.An overview on the degradability of polymer nanocompositesPolymer Degradation and Stability 88 2005 234CrossRefGoogle Scholar
Giannelis, E.Polymer layered silicate nanocompositesAdvanced Materials 8 1996 29CrossRefGoogle Scholar
Zhu, J.Wilkie, C. A.Thermal and fire studies on polystyrene–clay nanocompositesPolymer International 49 2000 11583.0.CO;2-G>CrossRefGoogle Scholar
Morgan, A. B.Flame retarded polymer layered silicate nanocomposites: A review of commercial and open literature systemsPolymers for Advanced Technologies 17 2006 206CrossRefGoogle Scholar
Ma, H. Y.Tong, L.Xu, Z. B.Fang, Z. P.Clay network in ABS-graft-MAH nanocomposites: Rheology and flammabilityPolymer Degradation and Stability 92 2007 1439CrossRefGoogle Scholar
Kashiwagi, T.Gruke, E.Hilding, J.Groth, K.Harris, R.Butler, K.Shields, J.Kharchenko, S.Douglas, J.Thermal and flammability properties of polypropylene/carbon nanotube nanocompositesPolymer 45 2004 4227CrossRefGoogle Scholar
Kashiwagi, T.Gruke, E.Hilding, J.Groth, K.Harris, R.Awad, W.Douglas, J.Thermal degradation and flammability properties of poly (propylene)/carbon nanotube compositesMacromolecular Rapid Communications 23 2002 7613.0.CO;2-K>CrossRefGoogle Scholar
Kashiwagi, T.Du, F.Winey, K. I.Groth, K. M.Shields, J.Bellayer, S. P.Kim, H.Douglas, J. F.Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: Effects of nanotube dispersion and concentrationPolymer 45 2005 471CrossRefGoogle Scholar
Ma, H.Tong, L.Xu, Z. B.Fang, Z. P.Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resinNanotechnology 18 2007 1CrossRefGoogle Scholar
Ma, H. Y.Tong, L. F.Xu, Z. B.Fang, Z. P.Functionalizing carbon nanotubes by grafting on intumescent flame retardant: Nanocomposite synthesis, morphology, rheology, and flammabilityAdvanced Functional Materials 18 2008 414CrossRefGoogle Scholar
Ye, L.Ding, P.Zhang, M.Qu, B. J.Synergistic effects of exfoliated LDH with some halogen-free flame retardants in LDPE/EVA/HFMH/LDH nanocompositesJournal of Applied Polymer Science107 2009Google Scholar
Zhang, M.Ding, P.Qu, B. J.Flammable, thermal, and mechanical properties of intumescent flame retardant PP/LDH nanocomposites with different divalent cationsPolymer Composites 30 2009 1000CrossRefGoogle Scholar
Jiao, C. M.Wang, Z. Z.Chen, X. L.Hu, Y.Synthesis of a magnesium/aluminum/iron layered double hydroxide and its flammability characteristics in halogen-free, flame-retardant ethylene/vinyl acetate copolymer compositesJournal of Applied Polymer Science 107 2007 2626CrossRefGoogle Scholar
Ramaraj, B.Yoon, K.-R.Thermal and physicomechanical properties of ethylene-vinyl acetate copolymer and layered double hydroxide compositesJournal of Applied Polymer Science 108 2008 4090CrossRefGoogle Scholar
Song, P. A.Zhu, Y.Tong, L. F.Fang, Z. P.C60 reduces the flammability of polypropylene nanocomposites by in situ forming gelled-ball networkNanotechnology 19 2008 1CrossRefGoogle Scholar
Fang, Z. P.Song, P. A.Tong, L. F.Guo, Z. H.Thermal degradation and flame retardancy of polypropylene/C60 nanocompositesThermochimica Acta 473 2008 106CrossRefGoogle Scholar
Song, P. A.Liu, H.Shen, Y.Du, B. X.Fang, Z. P.Fabrication of dendrimer-like fullerene (C60) decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocompositesJournal of Materials Chemistry19 2009Google Scholar
Song, P. A.Shen, Y.Du, B. X.Guo, Z. H.Fang, Z. P.Fabrication of fullerence decorated carbon nanotubes and its application in flame retarding polypropyleneNanoscale 1 2009 118CrossRefGoogle Scholar
Zhu, L. W.Wu, D. H.Xu, D. C.Carbon NanotubeBeijingChina Machine Press 2003Google Scholar
Zanetti, M.Camino, P.Reichert, P.Mülhaupt, R.Thermal behaviour of poly (propylene) layered silicate nanocompositesMacromolecular Rapid Communications 22 2001 1763.0.CO;2-C>CrossRefGoogle Scholar
Troitskii, B. B.Troitskaja, L. S.Yakhnov, A. S.Lopatin, M. A.Novikova, M. A.Retardation of thermal degradation of PMMA and PVC by C60European Polymer Journal 33 1997 1587CrossRefGoogle Scholar
Troitskii, B. B.Troitskaja, L. S.Dmitriev, A. A.Yakhnov, A. S.Inhibition of thermo-oxidative degradation of poly(methyl methacrylate) and polystyrene by C60European Polymer Journal 36 2000 1073CrossRefGoogle Scholar
Su, S. P.Jiang, D. D.Wilkie, C. A.Poly(methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically-modified claysPolymer Degradation and Stability 83 2004 321CrossRefGoogle Scholar
Zhang, J. G.Jiang, D. D.Wilkie, C. A.Polyethylene and polypropylene nanocomposites based on a three component oligomerically-modified clayPolymer Degradation and Stability 91 2006 641CrossRefGoogle Scholar
Kharchenko, S. B.Douglas, J. F.Obrzut, J.Grulke, E. A.Migler, K. B.Flow-induced properties of nanotube-filled polymer materialsNature Materials 3 2004 564CrossRefGoogle ScholarPubMed
Treece, M. A.Oberhauser, J. P.Soft glassy dynamics in polypropylene − clay nanocompositesMacromolecules 40 2007 571CrossRefGoogle Scholar
Rohlmann, C. O.Failla, M. D.Quinzani, L. M.Linear viscoelasticity and structure of polypropylene–montmorillonite nanocompositesPolymer 47 2006 7795CrossRefGoogle Scholar
Krusic, P. J.Wasserman, E.Keizer, P. N.Morton, J. R.Preston, K. F.Radical reactions of C60Science 22 1991 1183CrossRefGoogle Scholar
Krätschmer, W.Fostiropoulos, K.Huffman, D. R.The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: Evidence for the presence of the C60 moleculeChemical Physics Letters 170 1990 167CrossRefGoogle Scholar
Wu, Z. C.Jelski, D. A.George, T. F.Vibrational motions of buckminsterfullereneChemical Physics Letters 137 1987 291CrossRefGoogle Scholar
Weeks, D. E.Harter, W. G.Rotation–vibration spectra of icosahedral molecules. II. Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullereneJournal of Chemical Physics 90 1989 4744CrossRefGoogle Scholar
Zhang, J. B.Lodge, T. P.Macosko, C. W.Interfacial morphology development during PS/PMMA reactive couplingMacromolecules 38 2005 6586CrossRefGoogle Scholar
Neto, C.Craig, V. S.Colloid probe characterization: Radius and roughness determinationLangmuir 17 2001 2097CrossRefGoogle Scholar
Gan, L. B.Huang, S.Zhang, H. X.Zhang, A. X.Cheng, B. C.Cheng, H.Li, X. L.Shang, G.Fullerenes as a -butylperoxy radical trap, metal catalyzed reaction of -butyl hydroperoxide with fullerenes, and formation of the first fullerene mixed peroxides C60(O)(OOBu)4 and C70(OOBu)10Journal of the American Chemistry Society 124 2002 13CrossRefGoogle Scholar
Tang, B. Z.Leung, S. M.Peng, H.Yu, N. T.Direct fullerenation of polycarbonate via simple polymer reactionsMacromolecules 30 1997 2848CrossRefGoogle Scholar
Cao, T.Webber, S. E.Free radical copolymerization of styrene and C60Macromolecules 29 1996 3826CrossRefGoogle Scholar
Song, P. A.Fang, Z. P.Tong, L. F.Xu, Z. B.Synthesis of a novel oligomeric intumescent flame retardant and its application in polypropylenePolymer Engineering and Science 49 2009 1326CrossRefGoogle Scholar
Song, P. A.Fang, Z. P.Tong, L. F.Jin, Y. M.Lu, F. Z.Effects of metal chelates on a novel oligomeric intumescent flame retardant system for polypropyleneJournal of Analytical and Applied Pyrolysis 82 2008 286CrossRefGoogle Scholar
Sahoo, R. R.Patnaik, A.Surface confined self-assembled fullerene nanoclusters: A microscopic studyApplied Surface Science 245 2005 26CrossRefGoogle Scholar
Zhu, Y. F.Yi, T.Zheng, B.Cao, L. L.The interaction of C60 fullerene and carbon nanotube with Ar ion beamApplied Surface Science 137 1999 83CrossRefGoogle Scholar
Onoe, J.Nakao, A.Takeuchi, K.XPS study of a photopolymerized C60 filmPhysical Review B 55 1997CrossRefGoogle Scholar
Qian, L.Norin, L.Guo, J.-H.Såthe, C.Agui, A.Jansson, U.Nordgren, J.Formation of titanium fulleride studied by X-ray spectroscopiesPhysical Review B 59 1999CrossRefGoogle Scholar
Delobel, RLe Bras, M.Ouassou, N.Alistiqsa, F.Thermal behaviours of ammonium polyphosphate–pentaerythritol and ammonium pyrophosphate–pentaerythritol intumescent additives in polypropylene formulationsJournal of Fire Sciences 8 1990 85CrossRefGoogle Scholar
Kandola, B. K.Horrocks, A. R.Myler, P.Blair, D.The effect of intumescents on the burning behaviour of polyester-resin-containing compositesComposites, Part A 33 2002 805CrossRefGoogle Scholar
Beyer, G.Short communication: Carbon nanotubes as flame retardants for polymersFire and Materials 26 2002 291CrossRefGoogle Scholar
Beyer, G.Organoclays as flame retardants for PVCFire and Materials 29 2005 61CrossRefGoogle Scholar
Bourbigot, S.Duquesne, S.Jama, C.Polymer nanocomposites: How to reach low flammability?Macromolecular Symposia 233 2006 180CrossRefGoogle Scholar
Moniruzzaman, M.Winey, K. I.Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compoundingMacromolecules 39 2006 5194CrossRefGoogle Scholar
Costache, M. C.Wang, D. Y.Heidecker, M. J.Manias, E.Wilkie, C. A.The thermal degradation of poly(methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubesPolymers for Advanced Technologies 17 2006 272CrossRefGoogle Scholar
Schartel, B.Potschke, P.Knoll, U.Abdel-Goad, M.Fire behaviour of polyamide 6/multiwall carbon nanotube nanocompositesEuropean Polymer Journal 41 2005 1061CrossRefGoogle Scholar
Marosfoi, B. B.Marosi, G. J.Szep, A.Anna, P.Keszei, S.Nagy, B. J.Martvona, H.Sajo, I. E.Complex activity of clay and CNT particles in flame retarded EVA copolymerPolymers for Advanced Technologies 17 2006 255CrossRefGoogle Scholar
Ma, P. C.Kim, J. K.Tang, B. Z.Functionalization of carbon nanotubes using a silane coupling agentCarbon 44 2006 3232CrossRefGoogle Scholar
Wu, W.Zhu, H. R.Fan, L. Z.Yang, S. H.Synthesis and characterization of a grapevine nanostructure consisting of single-walled carbon nanotubes with covalently attached [60]fullerene ballsChemistry – A European Journal 14 2008 5981CrossRefGoogle ScholarPubMed
Guldi, D. M.Menna, E.Maggini, M.Marcaccio, M.Paolucci, D.Paolucci, F.Campidelli, S.Prato, M.Aminur Rahman, G. M.Schergna, S.Supramolecular hybrids of [60]fullerene and single-wall carbon nanotubesChemistry – A European Journal 12 2006 3975CrossRefGoogle Scholar
Delgado, J. L.Cruz, P. D. L.Urbina, A.Navarrete, J. T. L.Casado, J.Langa, F.The first synthesis of a conjugated hybrid of C60–fullerene and a single-wall carbon nanotubeCarbon 45 2007 2250CrossRefGoogle Scholar
Kashiwagi, T.Mu, M. F.Winey, K.Cipriano, B.Raghavan, S. R.Pack, S.Rafailovich, M.Grulke, E.Shields, J.Harris, R.Douglas, J.Relation between the viscoelastic and flammability properties of polymer nanocompositesPolymer 49 2008 4358CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×