Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2012
  • Online publication date: February 2013

2 - Structure and Dynamics of Vorticity in Turbulence



Ancient depictions of fluids, going back to the Minoans, envisaged waves and moving streams. They missed what we would call vortices and turbulence. The first artist to depict the rotational properties of fluids, vortical motion and turbulent flows was da Vinci (1506 to 1510). He would recognize the term vortical motion as it comes from the Latin vortere or vertere: to turn, meaning that vorticity is where a gas or liquid is rapidly turning or spiraling. Mathematically, one represents this effect as twists in the velocity derivative, that is the curl or the anti-symmetric component of the velocity gradient tensor. If the velocity field is u, then for the vorticity is ω = ∇ × u.

The aspect of turbulence which this chapter will focus upon is the structure, dynamics and evolution of vorticity in idealized turbulence – either the products of homogeneous, isotropic, statistically stationary states in forced, periodic simulations, or flows using idealized initial conditions designed to let us understand those states. The isotropic state is often viewed as a tangle of vorticity (at least when the amplitudes are large), an example of which is given in Fig. 2.1. This visualization shows isosurfaces of the magnitude of the vorticity, and similar techniques have been discussed before (see e.g. Pullin and Saffman, 1998; Ishihara et al., 2009; Tsinober, 2009). The goal of this chapter is to relate these graphics to basic relations between the vorticity and strain, to how this subject has evolved to using vorticity as a measure of regularity, then focus on the structure and dynamics of vorticity in turbulence, in experiments and numerical investigations, before considering theoretical explanations. Our discussions will focus upon three-dimensional turbulence.

Related content

Powered by UNSILO
Andreotti, B. 1997. Studying Burgers models to investigate the physical meaning of the alignments statistically observed in turbulence. Phys. Fluids, 9, 735–742.
Ashurst, W. T., R., , Kerstein, A., Kerr, R. M., and Gibson, C. H. 1987. Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids, 30, 2343–2353.
Bardos, C., and Titi, E. 2007. Euler equations for incompressible ideal fluids. Russian Math. Surveys, 62, 409–451.
Batchelor, G. K. 1953. Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge.
Beale, J. T., T., Kato, and Majda, A. 1984. Remarks on the breakdown of smooth solutions for the 3D Euler equations. Commun. Math. Phys., 94, 61–66.
Bermejo-Moreno, I., and Pullin, D. I. 2008. On the non-local geometry of turbulence. J. Fluid Mech., 603, 101–135.
Bermejo-Moreno, I., Pullin, D. I., and Horiuti, K. 2009. Geometry of enstrophy and dissipation, grid resolution effects and proximity issues in turbulence. J. Fluid Mech., 620, 121–166.
Betchov, R. 1956. An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech., 1, 497–504.
Boratav, O. N., and Pelz, R. B. 1994. Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. Phys. Fluids, 6, 2757–2784.
Brachet, M. E., Meiron, D. I., Orszag, S. A., Nickel, B. G., Morf, R. H., and Frisch, U. 1983. Small-scale structure of the Taylor-Green vortex. J. Fluid Mech., 130, 411–452.
Burgers, J. M. 1948. A mathematical model illustrating the theory of turbulence. Adv. Appl. Math., 1, 171–199.
Bustamante, M. D., and Kerr, R. M. 2008. 3D Euler about a 2D symmetry plane. PhysicaD, 237, 1912–1920.
Candès, E.J., and Donoho, D. L. 2002. New tight frames of curvelets and optimal representations of objects with piecewise-C2 singularities. Comm. Pure Appl. Math., 57, 219–266.
Cantwell, B. 1992. Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. FluidsA, 4, 782–793.
Cantwell, B. 1993. On the behavior of velocity gradient tensor invariants in direct numerical simulations of turbulence. Phys. FluidsA, 5, 2008–2013.
Cartes, C., Bustamante, M., and Brachet, M.E. 2007. Generalized Eulerian–Lagrangian description of Navier–Stokes dynamics. Phys. Fluids, 19, 077101.
Chen, S., Doolen, G., Herring, J.R., Kraichnan, R.H., Orszag, S.A., and She, Z.S. 1993. Far-dissipation range of turbulence. Phys. Rev. Lett., 70, 3051–3054.
Chen, S., Sreenivasan, K.R., and Nelkin, M. 1997. Inertial range scalings of dissipation and enstrophy in isotropic turbulence. Phys. Rev. Lett., 79, 1253–1256.
Chertkov, M., Pumir, A., and Shraiman, B.I. 1999. Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids, 11, 2394–2410.
Chevillard, L., and Meneveau, C. 2006. Lagrangian dynamics and statistical geometric structure of turbulence. Phys. Rev. Lett., 97, 174501.
Cichowlas, C., and Brachet, M.-E. 2005. Evolution of complex singularities in Kida–Pelz and Taylor–Green inviscid flows. Fluid Dyn. Res., 36, 239–248.
Constantin, P. 1994. Geometric statistics in turbulence. SIAM Review, 36, 73–98.
Constantin, P. 2001. Three lectures on mathematical fluid mechanics. In: From Finite to Infinite Dimensional Dynamical Systems, Glendinning, P.A., and Robinson, J.C. (eds), Kluwer Academic, Dordrecht, The Netherlands, for NATO ASI workshop at the Isaac Newton Institute, August 1995.
Constantin, P., and Fefferman, C. 1993. Direction of vorticity and the problem of global regularity for the Navier–Stokes equations. Indiana Univ. Math. Journal, 42, 775–789.
Constantin, P., Fefferman, C., and Majda, A.J. 1996. Geometric constraints on potentially singular solutions for the 3-D Euler equations. Comm. in PDE, 21, 559–571.
Cuypers, Y., Maurel, A., and Petitjeans, P. 2003. Vortex burst as a source of turbulence. Phys. Rev. Lett., 91, 194502.
da Vinci, L. 1506 to 1510. Codex Leicester.
Deng, J., Hou, T.Y., and Yu, X. 2005. Geometric properties and non-blowup of 3D incompressible Euler Flow. Commun. PDEs, 30, 225–243.
Doering, C. R. 2009. The 3D Navier–Stokes problem. Ann. Rev. Fluid Mech., 41, 109–128.
Donoho, D. L., and Johnstone, J. M. 1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81, 425–455.
Donzis, D. A., Yeung, P. K., and Sreenivasan, K. R. 2008. Dissipation and enstrophy in isotropic turbulence: Resolution and scaling in direct numerical simulations. Phys. Fluids, 20, 045108.
Douady, S., Couder, Y., and Brachet, M. E. 1991. Direct observation of the intermittency of intense vorticity filaments in turbulence. Phys. Rev. Lett., 67, 983–986.
Euler, L. 1761. Principia motus fluidorum. Novi Commentarii Acad. Sci. Petropolitanae, 6, 271–311.
Farge, M. 1992. Wavelet transforms and their application to turbulence. Annu. Rev. Fluid Mech., 24, 395–457.
Fefferman, C. 2000. Existence and smoothness of the Navier–Stokes equation. Clay Millenium Prize description., 1–5.
Gibbon, J.D. 2008. The three-dimensional Euler equations: Where do we stand?PhysicaD, 237, 1895–1904.
Gibbon, J.D., Holm, D.D., Kerr, R.M., and Roulstone, I. 2006. Quaternions and particle dynamics in the Euler fluid equations. Nonlinearity, 19, 1969–1983.
Grafke, T., Homann, H., Dreher, J., and Grauer, R. 2008. Numerical simulations of possible finite time singularities in the incompressible Euler equations: comparison of numerical methods. PhysicaD, 237, 1932–1936.
Gulak, Y., and Pelz, R. B. 2005. High-symmetry Kida flow: Time series analysis and resummation. Fluid Dyn. Res., 36, 211–220.
Hamlington, P. E., Schumacher, J., and Dahm, W. J. A. 2008a. Direct assessment of vorticity alignment with local and nonlocal strain rates in turbulent flows. Phys. Fluids, 20, 111703.
Hamlington, P. E., Schumacher, J., and Dahm, W. J. A. 2008b. Local and nonlocal strain rate fields and vorticity alignment in turbulent flows. Phys. Rev.E, 77, 026303.
Herring, J.R., and Kerr, R.M. 1982. Comparison of direct numerical simulation with prediction of two–point closures. J. Fluid Mech., 118, 205–219.
Holm, D. D., and Kerr, R. M. 2007. Helicity in the formation of turbulence. Phys. Fluids, 19, 025101.
Horiuti, K. 2001. A classification method for vortex sheet and tube structures in turbulent flows. Phys. Fluids, 13, 3756–3774.
Horiuti, K., and Fujisawa, T. 2008. Multi mode stretched spiral vortex in homogeneous isotropic turbulence. J. Fluid Mech., 595, 341–366.
Horiuti, K., and Takagi, Y. 2005. Identification method for vortex sheet structures in turbulent flows. Phys. Fluids, 17, 121703.
Hou, T. Y., and Li, R. 2008. Blowup or no blowup? The interplay between theory and numerics. PhysicaD, 237, 1937–1944.
Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K., and Uno, A. 2007. Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech., 592, 335–366.
Ishihara, T., Gotoh, T., and Kaneda, Y. 2009. Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech., 41, 165–180.
Jeong, J., and Hussain, F. 1995. On the identification of a vortex. J. Fluid Mech., 285, 69–94.
Jianwei, M., Hussaini, M. Y., Vasilyev, O. V., and Le Dimet, F. 2009. Multiscale geometric analysis of turbulence by curvelets. Phys. Fluids, 21, 075104.
Jiménez, J., and Wray, A. A. 1998. On the characteristics of vortex filaments in isotropic turbulence. J. Fluid Mech., 373, 255–285.
Kerr, R. M. 1985. Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech., 153, 31–58.
Kerr, R. M. 1987. Histograms of helicity and strain in numerical turbulence. Phys. Rev. Lett., 59, 783–786.
Kerr, R. M. 1993. Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. FluidsA, 5, 1725–1746.
Kerr, R. M. 2005. Velocity and scaling of collapsing Euler vortices. Phys. Fluids, 17, 075103.
Kerr, R.M., Virk, D., and Hussain, F. 1990. Effects of incompressible and compressible vortex reconnection. Page 1 of: Topological Fluid Mechanics, Moffatt, H.K., and Tsinober, A. (eds), Cambridge University Press, for IUTAM meeting at Cambridge University 1989.
Kida, S., and Murakami, Y. 1987. Kolmogorov similarity in freely decaying turbulence. Phys. Fluids, 30, 2030–2039.
Koenderink, J.J., and van Doorn, A.J. 1992. Surface shape and curvature scales. Image Vision Comput., 10, 557–565.
Kozono, H., and Taniuchi, Y. 2000. Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Commun. Math. Phys., 215, 191–200.
Lanterman, D. D., Lathrop, D. P., Zeff, B. W., McAllister, R., Roy, R., and Kostellich, E. J. 2004. Characterizing intense rotation and dissipation in turbulent flows. Chaos, 14, S8.
Lu, L., and Doering, C. R. 2008. Limits on enstrophy growth for solutions of the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J., 57, 2693–2728.
Lundgren, T. S. 1967. Distribution functions in the statistical theory of turbulence. Phys. Fluids, 10, 969–975.
Lundgren, T. S. 1982. Strained spiral vortex model for turbulent fine structure. Phys. Fluids, 25, 2193–2202.
Lundgren, T. S., and Rogers, M. M. 1994. An improved measure of strain state probability in turbulent flows. Phys. Fluids A, 6, 1838–1847.
Lüthi, B., Tsinober, A., and Kinzelbach, W. 2005. Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech., 528, 87–118.
Mallat, S. 1999. A Wavelet Tour of Signal Processing. Academic Press, San Diego.
Martin, J., Ooi, A., Chong, M.S., and Soria, J. 1998. Dynamics of the velocity gradient tensor invariants in isotropic turbulence. Phys. Fluids, 10, 2336–2346.
Moisy, F., and Jiménez, J. 2004. Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech., 513, 111–133.
Monin, A.S. 1967. Equations of turbulent motion. Prikl. Mat. Mekh., 31, 1057–1068.
Mullin, J. A., and Dahm, W. J. A. 2006a. Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. I. Accuracy assessments. Phys. Fluids, 18, 035101.
Mullin, J. A., and Dahm, W. J. A. 2006b. Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. II. Experimental results. Phys. Fluids, 18, 035102.
Nomura, K. K., and Post, G. K. 1998. The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence. J. Fluid Mech., 377, 65–97.
Novikov, E. A. 1968. Kinetic equations for a vortex field. Sov. Phys. Dokl., 12, 1006–1008.
Ohkitani, K. 1994. Kinematics of vorticity: Vorticity–strain conjugation in incompressible fluid flows. Phys. Rev.E, 50, 5107–5110.
Okamoto, N., Yoshimatsu, K., Schneider, K., Farge, M., and Kaneda, Y. 2007. Coherent vortices in high-resolution direct numerical simulation of homogeneous isotropic turbulence: A wavelet viewpoint. Phys. Fluids, 19, 115109.
Orszag, S.A., and Patterson, G.S. 1972. Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett., 28, 76–79.
Pelz, R. B., and Ohkitani, K. 2005. Linearly strained flows with and without boundaries-the regularizing effect of the pressure term. Fluid Dyn. Res., 36, 193–210.
Ponce, G. 1985. Remark on a paper by J.T. Beale, T. Kato and A. Majda. Commun. Math. Phys., 98, 349.
Pullin, D. I., and Lundgren, T. S. 2001. Axial motion and scalar transport in stretched spiral vortices. Phys. Fluids, 13, 2553–2563.
Pullin, D. I., and Saffman, P. S. 1998. Vortex dynamics in turbulence. Annu. Rev. Fluid Mech., 30, 31–51.
Rossi, M. 2000. Of vortices and vortical layers: an overview. Pages 40–123 of: Lectures Notes in Physics, Maurel, A., and Petitjeans, P. (eds), vol. 555. Springer, Berlin and Heidelberg.
Rossi, M., Bottausci, F., Maurel, A., and Petitjeans, P. 2004. A nonuniformly stretched vortex. Phys. Rev. Lett., 92, 054504.
Rotta, J. C. 1997. Turbulente Strömungen. Teubner, Stuttgart.
Saffman, P. 1997. Vortex Dynamics. Cambridge University Press.
Saffman, P. G., and Pullin, D. I. 1996. Calculation of velocity structure functions for vortex models of isotropic turbulence. Phys. Fluids, 8, 3072–3084.
Schumacher, J. 2007. Sub-Kolmogorov-scale fluctuations in fluid turbulence. Europhys. Lett., 80, 54001.
Schumacher, J., Sreenivasan, K. R., and Yakhot, V. 2007. Asymptotic exponents from low-Reynolds-number flows. New J. Phys., 9, 89.
Schumacher, J., Eckhardt, B., and Doering, C. R. 2010. Extremal vorticity growth in Navier–Stokes turbulence. Phys. Lett.A, 371, 861–865.
She, Z.-S., Jackson, E., and Orszag, S. A. 1991. Structure and dynamics of homogeneous turbulence: Models and simulations. Proc. R. Soc. London, Ser. A, 434, 101–124.
Sheng, J., Malkiel, E., and Katz, J. 2009. Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer. J. Fluid Mech., 633, 17–60.
Siggia, E. D. 1981a. Invariants for the one-point vorticity and strain rate correlation functions. Phys. Fluids, 24, 1934–1936.
Siggia, E. D. 1981b. Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid Mech., 107, 375–406.
Siggia, E. D., and Patterson, G.S. 1978. Intermittency effects in a numerical simulation of stationary three-dimensional turbulence. J. Fluid Mech., 86, 567–592.
Sreenivasan, K. R., and Antonia, R. A. 1997. The phenomenology of small-scale turbulence. Ann. Rev. Fluid Mech., 29, 435–472.
Tanaka, M., and Kida, S. 1993. Characterization of vortex tubes and sheets. Phys. Fluids A, 5, 2079–2082.
Taylor, G.I. 1938. Production and dissipation of vorticity in a turbulent fluid. Proc. R. Soc. London, Ser. A, 164, 15–23.
Taylor, G.I., and Green, A.E. 1937. Mechanism of the production of small eddies from large ones. Proc. R. Soc. London, Ser. A, 158, 499–521.
Tennekes, H. 1968. Simple model for the small-scale structure of turbulence. Phys. Fluids, 11, 669–671.
Tropea, C., Yarin, A. L., and Foss, J. F. 2007. Handbook of Experimental Fluid Mechanics. Springer, Berlin.
Tsinober, A. 2009. An Informal Conceptual Introduction to Turbulence. Springer, Berlin.
Tsinober, A., Kit, E., and Dracos, T. 1992. Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech., 242, 169–192.
Vieillefosse, P. 1982. Local interaction between vorticity and shear in a perfect incompressible fluid. J. Phys., 43, 837–842.
Vieillefosse, P. 1984. Internal motion of a small element of fluid in an inviscid flow. PhysicaA, 125, 150–162.
Vincent, A., and Meneguzzi, M. 1991. The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech., 225, 1–20.
Virk, D., Kerr, R.M., and Hussain, F. 1995. Compressible vortex reconnection. J. Fluid Mech., 304, 47–86.
von Kármán, T., and Howarth, L. 1938. On the statistical theory of turbulence. Proc. R. Soc. London, Ser. A, 164, 192–215.
Wallace, J. M. 2009. Twenty years of experimental and direct numerical simulation access to the velocity gradient tensor: What have we learned about turbulence?Phys. Fluids, 21, 021301.
Wallace, J. M., and Vukoslavčević, P. V. 2010. Measurement of the velocity gradient tensor in turbulence. Ann. Rev. Fluid Mech., 42, 157–181.
Wilczek, M., and Friedrich, R. 2009. Dynamical origins for non-Gaussian vorticity distributions in turbulent flows. Phys. Rev.E, 80, 016316.
Ying, L., Demanet, L., and Candès, E. J. 2005. 3D Discrete curvelet transform. Tech. Rep. Applied and Computational Mathematics, California Institute of Technology, 1–11.
Zeff, B. W., Lanterman, D. D., McAllister, R., Roy, R., Kostellich, E. J., and Lathrop, D. P. 2003. Measuring intense rotation and dissipation in turbulent flows. Nature, 421, 146–149.