Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T14:09:12.486Z Has data issue: false hasContentIssue false

2 - Synchrotron Radiation

Published online by Cambridge University Press:  06 April 2017

Kwang-Je Kim
Affiliation:
Argonne National Laboratory, Illinois
Zhirong Huang
Affiliation:
SLAC National Accelerator Laboratory, California
Ryan Lindberg
Affiliation:
Argonne National Laboratory, Illinois
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Synchrotron Radiation and Free-Electron Lasers
Principles of Coherent X-Ray Generation
, pp. 33 - 73
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kim, K.-J., “Characteristics of synchrotron radiation,” in Proc. US Particle Accelerator School, ser. AIP Conference Proceedings, Month, M. and Dienes, M., Eds., no. 184. New York: AIP, p. 565, 1989.
Wiedemann, H., Synchrotron Radiation. Berlin, Germany: Springer-Verlag, 1993.
Hofmann, A., The Physics of Synchrotron Radiation. Cambridge, UK: Cambridge University Press, 2004.
Schott, G. A., Electromagnetic Radiation. Cambridge, UK: Cambridge University Press, 1912.
Schwinger, J., “On the classical radiation of accelerated electrons,” Phys. Rev., vol. 75, p. 1912, 1949.Google Scholar
Feynman, R. P., Leighton, R. B., and Sands, M., The Feynman Lecture on Physics. Reading, Mass: Addison-Wesley, 1963.
Landau, L. D. and Lifshitz, E. M., The Classical Theory of Fields, 4th ed., vol. 2, ser. Course of Theoretical Physics. London: Pergamon, 1979 (Translated from the Russian).
Jackson, J. D., Classical Electrodynamics, 2nd ed. New York: Wiley, 1975.
Alferov, D. F., Bashmakov, Y. A., and Bessonov, E. G., “Undulator radiation,” Zh. Tekh. Fiz., vol. 43, p. 2126, 1973, translated from Russian in Sov. Phys. Tech. Phys., 18:1336, 1974.Google Scholar
Kincaid, B. M., “A short-period helical wiggler as an improved source of synchrotron radiation,” J. Appl. Phys., vol. 48, p. 2684, 1977.Google Scholar
Geloni, G., Saldin, E. L., Schneidmiller, E. A., and Yurkov, M. V., “Paraxial green's functions in synchrotron radiation theory,” DESY, Tech. Rep. 05–032, 2005.Google Scholar
Halbach, K., “Physical and optical properties of rare earth cobalt magnets,” Nucl. Instrum. Methods Phys. Res., vol. 187, p. 109, 1981.Google Scholar
Halbach, K., “Permanent magnetic undulators,” J. Phys. Colloques C1, vol. 44, pp. C1–211, 1983.Google Scholar
Attwood, D., Soft X-rays and Extreme Ultraviolet Radiation. Cambridge, UK: Cambridge University Press, 1999.
Krinsky, S., “Undulators as sources of synchrotron radiation,” IEEE Trans. Nucl. Sci., vol. 30, p. 3078, 1983.Google Scholar
Kim, K.-J., in X-ray Data Booklet, Vaughn, D., Ed., no. 490. New York: Lawrence Berkeley Laboratory, 1986.
Kim, K.-J., “Angular distribution of undulator power for an arbitrary deflection parameter K,” Nucl. Instrum. Methods Phys. Res., Sect. A, vol. 246, p. 67, 1986.Google Scholar
Kitamura, H., “Polarization of undulator radiation,” Japanese J. Appl.Phys., vol. 19, p. 2185, 1980.Google Scholar
Sasaki, S., “Analyses for a planar variably-polarizing undulator,” Nucl. Instrum. Methods Phys. Res., Sect. A, vol. 347, p. 83, 1994.Google Scholar
Temnykh, S., “Delta undulator for Cornell energy recovery linac,” Phys. Rev. ST-Accel. Beams., vol. 11, p. 120702, 2008.Google Scholar
Moiseev, M. B., Nikitin, M. M., and Fedosov, N. I., “Change in the kind of polarization of undulator radiation,” Sov. Phys. J., vol. 21, p. 332, 1978.Google Scholar
Kim, K.-J., “A synchrotron radiation source with arbitrarily adjustable elliptical polarization,” Nucl. Instrum. Methods Phys. Res., vol. 219, p. 425, 1984.Google Scholar
Alferov, D. F., Bashmakov, Y. A., and Bessonov, E. G., “Generation of circularly-polarized electromagnetic radiation,” Zh. Tekh. Fiz., vol. 46, p. 2392, 1976, translated from Russian in Sov. Phys. Tech. Phys., 21:1408, 1976.Google Scholar
Kim, K.-J., “Brightness, coherence, and propagation characteristics of synchrotron radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A, vol. 246, p. 71, 1986.Google Scholar
Cartwright, N. D., “A non-negative Wigner-type distribution,” Physica, vol. 83, p. 210, 1976.Google Scholar
Geloni, G., Saldin, E. L., Schneidmiller, E. A., and Yurkov, M. V., “Transverse coherence properties of X-ray beams in third-generation synchrotron radiation sources,” Nucl. Instrum. Methods Phys. Res., Sect. A, vol. 588, p. 463, 2008.Google Scholar
Bazarov, I. V., “Synchrotron radiation representation in phase space,” Phys. Rev. ST-Accel. Beams, vol. 15, p. 050703, 2012.Google Scholar
Onuki, H. and Elleaume, P., Undulators, Wigglers, and Their Applications. London, UK: CRC Press, 2003.
Lindberg, R. R. and Kim, K.-J., “Compact representations of partially coherent undulator radiation suitable for wave propagation,” Phys. Rev. ST-Accel. Beams, vol. 18, p. 090702, 2015.Google Scholar
Chasman, R., Green, G. K., and Rowe, E. M., “Preliminary design of a dedicated synchrotron radiation facility,” in Proceedings of the 1975 Particle Accelerator Conference, Washington, DC, 1975, p. 1765.
Einfeld, D., Schaper, J., and Plesko, M., “Design of a diffraction limited light source (DIFL),” in Proceedings of the 1995 Particle Accelerator Conference, Dallas, TX, p. 177, 1995.
Leemann, S. C., Åndersson, A., Eriksson, M., Lindgren, L. J., Wallén, E., Bengtsson, J., and Streun, A., “Beam dynamics and expected performance of Sweden's new storage-ring light source: MAX IV,” Phys. Rev. ST-Accel. Beams., vol. 12, p. 12070, 2009.Google Scholar
J. of Synchrotron Rad., vol. 21, no. 5, Special Issue on Diffraction-Limited Storage Rings and New Science Opportunities, 2014.
Bilderback, D. H., Brock, J. D., Dale, D. S., Finkelstein, K. D., Pfeifer, M. A., and Gruner, S. M., “Energy recovery linac (ERL) coherent hard X-ray sources,” New J. Phys., vol. 12, p. 035011, 2010.Google Scholar
Casalbuoni, S., Hagelstein, M., Kostka, B., Rossmanith, R., Weisser, M., Steffens, E., Bernhard, A., Wollmann, D., and Baumbach, T., “Generation of X-ray radiation in a storage ring by a superconductive cold-bore in-vacuum undulator,” Phys. Rev. ST-Accel. Beams., vol. 9, p. 010702, 2006.Google Scholar
Ivanyushenkov, Y. et al., “Development and operating experience of a short-period superconducting undulator at the advanced photon source,” Phys. Rev. ST-Accel. Beams., vol. 18, p. 040703, 2015.Google Scholar
Kim, S. H., “A scaling law for the magnetic fields of superconducting undulators,” Nucl. Instrum. Methods Phys. Res., Sect. A, vol. 546, p. 604, 2005.Google Scholar
Milburn, R. H., “Electron scattering by an intense polarized photon field,” Phys. Rev. Lett., vol. 10, p. 75, 1963.Google Scholar
Sprangle, P., Ting, A., Esarey, E., and Fisher, A., “Tunable, short pulse hard X-rays from a compact laser synchrotron source,” J. Appl. Phys., vol. 72, p. 5032, 1992.Google Scholar
Kim, K.-J., Chattopadhyay, S., and Shank, C. V., “Generation of femtosecond X-rays by 90° Thomson scattering,” Nucl. Instrum. Methods Phys. Res., Sect. A, vol. 341, p. 351, 1994.Google Scholar
Huang, Z. and Ruth, R. D., “Laser-electron storage ring,” Phys. Rev. Lett., vol. 80, p. 976, 1998.Google Scholar
Graves, W., Bessuille, J., Brown, P., Carbajo, S., Dolgashev, V., Hong, K.-H., Ihloff, E., Khaykovich, B., Lin, H., Murari, K., Nanni, E., Resta, G., Tantawi, S., Zapata, L., Kärtner, F., and Moncton, D., “Compact X-ray source based on burst-mode inverse Compton scattering at 100 khz,” Phys. Rev. ST-Accel. Beams, vol. 17, p. 120701, 2014.Google Scholar
Schoenlein, R.W., Leemans, W. P., Chin, A. H., Volfbeyn, P., Glover, T. E., Balling, P., Zolotorev, M., Kim, K.-J., Chattopadhyay, S., and Shank, C. V., “Femtosecond X-ray pulses at 0.4 å generated by 90◦ Thomson scattering,” Science, vol. 274, p. 236, 1996.Google Scholar
Brown, W. J., Anderson, S. G., Barty, C. P. J., Betts, S. M., Booth, R., Crane, J. K., Cross, R. R., Fittinghoff, D. N., Gibson, D. J., Hartemann, F. V., Hartouni, E. P., Kuba, J., Le Sage, G. P., Slaughter, D. R., Tremaine, A. M., Wootton, A. J., Springer, P. T., and Rosenzweig, J. B., “Experimental characterization of an ultrafast Thomson scattering X-ray source with three-dimensional time and frequency-domain analysis,” Phys. Rev. ST-Accel. Beams, vol. 7, p. 060702, 2004.Google Scholar
Shimizu, H., Akemoto, M., Arai, Y., Araki, S., Aryshev, A., Fukuda, M., Fukuda, S., Haba, J., Hara, K., Hayano, H., Higashi, Y., Honda, Y., Honma, T., Kako, E., Kojima, Y., Kondo, Y., Lekomtsev, K., Matsumoto, T., Michizono, S., Miyoshi, T., Nakai, H., Nakajima, H., Nakanishi, K., Noguchi, S., Okugi, T., Sato, M., Shevelev, M., Shishido, T., Takenaka, T., K. T., Urakawa, J., Watanabe, K., Yamaguchi, S., Yamamoto, A., Yamamoto, Y., Sakaue, K., Hosoda, S., Iijima, H., Kuriki, M., Tanaka, R., Kuramoto, A., Omet, M., and Takeda, A., “X-ray generation by inverse Compton scattering at the superconducting RF test facility,” Nucl. Instrum. Methods Phys. Res., Sect. A, vol. 772, p. 26, 2015.Google Scholar
Gallardo, J. C., Fernow, R. C., Palmer, R., and Pellegrini, C., “Theory of a free-electron laser with a gaussian optical undulator,” IEEE J. Quantum Electron., vol. 24, p. 1557, 1988.Google Scholar
Lawler, J. E., Bisognano, J., Bosch, R. A., Chiang, T. C., Green, M. A., Jacobs, K., Miller, T., Wehlitz, R., Yavuz, D., and York, R. C., “Nearly copropagating sheared laser pulse FEL undulator for soft X-rays,” J. Appl. Phys. D, vol. 46, p. 325501, 2013.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×