Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T18:48:30.197Z Has data issue: false hasContentIssue false

8 - Lectures on Moving Frames

Published online by Cambridge University Press:  05 July 2011

Peter J. Olver
Affiliation:
University of Minnesota
Decio Levi
Affiliation:
Università degli Studi Roma Tre
Peter Olver
Affiliation:
University of Minnesota
Zora Thomova
Affiliation:
SUNY Institute of Technology
Pavel Winternitz
Affiliation:
Université de Montréal
Get access

Summary

Abstract

This chapter presents the equivariant method of moving frames for finite-dimensional Lie group actions, surveying a variety of applications, including geometry, differential equations, computer vision, numerical analysis, the calculus of variations, and invariant flows.

Introduction

According to Akivis [1], the method of moving frames originates in work of the Estonian mathematician Martin Bartels (1769–1836), a teacher of both Gauss and Lobachevsky. The field is most closely associated with Élie Cartan [22], who forged earlier contributions by Darboux, Frenet, Serret, and Cotton into a powerful tool for analyzing the geometric properties of submanifolds and their invariants under the action of transformation groups. In the 1970s, several researchers, cf. [25, 37, 38, 49], began the process of developing a firm theoretical foundation for the method. The final crucial step [32], is to define a moving frame simply as an equivariant map from the manifold back to the transformation group. All classical moving frames can be reinterpreted in this manner. Moreover, the equivariant approach is completely algorithmic, and applies to very general group actions.

Cartan's normalization construction of a moving frame can be interpreted as the choice of a cross-section to the group orbits. This enables one to algorithmically construct an equivariant moving frame along with a complete systems of invariants through the induced invariantization process. The existence of an equivariant moving frame requires freeness of the underlying group action, i.e., the isotropy subgroup of any single point is trivial.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Akivis, M. A., and Rosenfeld, B. A. 1993. Élie Cartan (1869–1951). Transl. Math. Monogr., vol. 123. Providence, RI: Amer. Math. Soc.Google Scholar
[2] Ames, A. D., Jalkio, J. A., and Shakiban, C. 2002. Three-dimensional object recognition using invariant Euclidean signature curves. Pages 13–23 of: Analysis, Combinatorics and Computing. Hauppauge, NY: Nova Sci. Publ.Google Scholar
[3] Ames, W. F. 1968. Nonlinear Ordinary Differential Equations in Transport Processes. Math. Sci. Engrg., vol. 42. New York: Academic Press.CrossRefGoogle Scholar
[4] Anderson, I. M. 1989. The Variational Bicomplex. Tech. rept. Utah State University.Google Scholar
[5] Angenent, S., Sapiro, G., and Tannenbaum, A. 1998. On the affine heat equation for non-convex curves. J. Amer. Math. Soc., 11(3), 601–634.CrossRefGoogle Scholar
[6] Bazin, P.-L., and Boutin, M. 2004. Structure from motion: a new look from the point of view of invariant theory. SIAM J. Appl. Math., 64(4), 1156–1174.Google Scholar
[7] Berchenko, I., and Olver, P. J. 2000. Symmetries of polynomials. J. Symbolic Comput., 29(4-5), 485–514.CrossRefGoogle Scholar
[8] Blumenthal, L. M. 1953. Theory and Applications of Distance Geometry. Oxford: Oxford Univ. Press.Google Scholar
[9] Born, M., and Wolf, E. 1970. Principles of Optics. New York: Pergamon Press.Google Scholar
[10] Boutin, M. 2000. Numerically invariant signature curves. Int. J. Comput. Vision, 40(3), 235–248.CrossRefGoogle Scholar
[11] Boutin, M. 2002. On orbit dimensions under a simultaneous Lie group action on n copies of a manifold. J. Lie Theory, 12(1), 191–203.Google Scholar
[12] Boutin, M. 2003. Polygon recognition and symmetry detection. Found. Comput. Math., 3(3), 227–271.CrossRefGoogle Scholar
[13] Boutin, M., and Kemper, G. 2004. On reconstructing n-point configurations from the distribution of distances or areas. Adv. in Appl. Math., 32(4), 709–735.CrossRefGoogle Scholar
[14] Boyko, V., Patera, J., and Popovych, R. 2006. Computation of invariants of Lie algebras by means of moving frames. J. Phys. A, 39(20), 5749–5762.CrossRefGoogle Scholar
[15] Boyko, V., Patera, J., and Popovych, R. 2008. Invariants of solvable Lie algebras with triangular nilradicals and diagonal nilindependent elements. Linear Algebra Appl., 428(4), 834–854.CrossRefGoogle Scholar
[16] Broadbridge, P., and Tritscher, P. 1994. An integrable fourth-order nonlinear evolution equation applied to thermal grooving of metal surfaces. IMA J. Appl. Math., 53(3), 249–265.CrossRefGoogle Scholar
[17] Bruckstein, A. M., and Shaked, D. 1998. Skew symmetry detection via invariant signatures. Pattern Recognition, 31(2), 181–192.CrossRefGoogle Scholar
[18] Bruckstein, A. M., Holt, R. J., Netravali, A. N., and Richardson, T. J. 1993. Invariant signatures for planar shape recognition under partial occlusion. Comput. Vision Graphics Image Process., 58(1), 49–65.Google Scholar
[19] Budd, C. J., and Iserles, A. 1999. Geometric integration: numerical solution of differential equations on manifolds. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357(1754), 945–956.CrossRefGoogle Scholar
[20] Calabi, E., Olver, P. J., and Tannenbaum, A. 1996a. Affine geometry, curve flows, and invariant numerical approximations. Adv. Math., 124(1), 154–196.CrossRefGoogle Scholar
[21] Calabi, E., Olver, P. J., Shakiban, C., Tannenbaum, A., and Haker, S. 1996b. Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vision, 26, 107–135.CrossRefGoogle Scholar
[22] Cartan, É. 1935. La méthode du repère mobile, la théorie des groupes continus, et les espaces généralisés. Exposés de géométrie, vol. 5. Paris: Hermann.Google Scholar
[23] Cheh, J., Olver, P. J., and Pohjanpelto, J. 2005. Maurer–Cartan equations for Lie symmetry pseudogroups of differential equations. J. Math. Phys., 46(2), 023504.CrossRefGoogle Scholar
[24] Cheh, J., Olver, P. J., and Pohjanpelto, J. 2008. Algorithms for differential invariants of symmetry groups of differential equations. Found. Comput. Math., 8(4), 501–532.CrossRefGoogle Scholar
[25] Chern, S. S. 1985. Moving frames. Astérisque, numéro hors série, 67–77.Google Scholar
[26] Chou, K.-S., and Qu, C.-Z. 2003. Integrable equations arising from motions of plane curves. II. J. Nonlinear Sci., 13(5), 487–517.CrossRefGoogle Scholar
[27] Dalle, D. 2006. Comparison of numerical techniques for Euclidean curvature. Rose-Hulman Undergraduate Math. J., 7(1).Google Scholar
[28] Deeley, R J., Horwood, J. T., McLenaghan, R. G., and Smirnov, R. G. 2004. Theory of algebraic invariants of vector spaces of Killing tensors: methods for computing the fundamental invariants. Pages 1079–1086 of: Symmetry in Nonlinear Mathematical Physics. Part 1, 2, 3. Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 50, Part 1, vol. 2. Kiev: Natsīonal. Akad. Nauk Ukraïni Īnst. Mat.Google Scholar
[29] Dhooghe, P. F. 1996. Multilocal invariants. Pages 121–137 of: Geometry and Topology of Submanifolds. VIII. Brussels, 1995/Nordfjordeid, 1995: World Sci. Publ., River Edge, NJ.Google Scholar
[30] Dorodnitsyn, V. A. 1994. Finite difference models entirely inheriting continuous symmetry of original differential equations. Internat. J. Modern Phys. C, 5(4), 723–734.CrossRefGoogle Scholar
[31] Faugeras, O. D. 1994. Cartan's moving frame method and its application to the geometry and evolution of curves in the Euclidean, affine and projective planes. Pages 11–46 of: Applications of Invariance in Computer Vision. Lecture Notes In Comput. Sci., vol. 825. Berlin: Springer.CrossRefGoogle Scholar
[32] Fels, M., and Olver, P. J. 1999. Moving coframes. II. Regularization and theoretical foundations. Acta Appl. Math., 55(2), 127–208.CrossRefGoogle Scholar
[33] Feng, S., Kogan, I., and Krim, H.Classification of curves in 2D and 3D via affine integral signatures. Acta. Appl. Math., 109(3), 903–937.CrossRef
[34] Gage, M., and Hamilton, R. S. 1986. The heat equation shrinking convex plane curves. J. Differential Geom., 23(1), 69–96.CrossRefGoogle Scholar
[35] Goldstein, R. E., and Petrich, D. M. 1991. The Korteweg–de Vries hierarchy as dynamics of closed curves in the plane. Phys. Rev. Lett., 67(23), 3203–3206.CrossRefGoogle ScholarPubMed
[36] Grayson, M. A. 1987. The heat equation shrinks embedded plane curves to round points. J. Differential Geom., 26(2), 285–314.CrossRefGoogle Scholar
[37] Green, M. L. 1978. The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces. Duke Math. J., 45(4), 735–779.CrossRefGoogle Scholar
[38] Griffiths, P. 1974. On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry. Duke Math. J., 41, 775–814.CrossRefGoogle Scholar
[39] Griffiths, P. A. 1983. Exterior differential systems and the calculus of variations. Progr. Math., vol. 25. Boston, MA: Birkhäuser.CrossRefGoogle Scholar
[40] Guggenheimer, Heinrich, W. 1963. Differential geometry. New York: McGraw-Hill.Google Scholar
[41] Hairer, E., Lubich, C., and Wanner, G. 2002. Geometric numerical integration. Springer Ser. Comput. Math., vol. 31. Berlin: Springer.CrossRefGoogle Scholar
[42] Hann, C. E., and Hickman, M. S. 2002. Projective curvature and integral invariants. Acta Appl. Math., 74(2), 177–193.CrossRefGoogle Scholar
[43] Hasimoto, H. 1972. A soliton on a vortex filament. J. Fluid Mech., 51(2), 477–485.CrossRefGoogle Scholar
[44] Hubert, E. 2007. Generation properties of Maurer–Cartan invariants. Tech. rept. inria-00194528. INRIA.Google Scholar
[45] Hubert, E. 2009. Differential invariants of a Lie group action: syzygies on a generating set. J. Symbolic Comput., 44(4), 382–416.CrossRefGoogle Scholar
[46] Hubert, E., and Kogan, I. A. 2007a. Rational invariants of a group action. Construction and rewriting. J. Symbolic Comput., 42(1-2), 203–217.CrossRefGoogle Scholar
[47] Hubert, E., and Kogan, I. A. 2007b. Smooth and algebraic invariants of a group action: local and global constructions. Found. Comput. Math., 7(4), 455–493.CrossRefGoogle Scholar
[48] Hubert, E., and Olver, P. J. 2007. Differential invariants of conformal and projective surfaces. SIGMA Symmetry Integrability Geom. Methods Appl., 3, 097.Google Scholar
[49] Jensen, G. R. 1977. Higher order contact of submanifolds of homogeneous spaces. Lecture Notes in Math., vol. 610. Berlin: Springer.CrossRefGoogle Scholar
[50] Kenney, J. P. 2009. Evolution of Differential Invariant Signatures and Applications to Shape Recognition. Ph.D. thesis, University of Minnesota.
[51] Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., and Yezzi, , A. Jr. 1996. Conformal curvature flows: from phase transitions to active vision. Arch. Rational Mech. Anal., 134(3), 275–301.CrossRefGoogle Scholar
[52] Kim, P. 2007. Invariantization of numerical schemes using moving frames. BIT, 47(3), 525–546.CrossRefGoogle Scholar
[53] Kim, P. 2008. Invariantization of the Crank-Nicolson method for Burgers' equation. Phys. D, 237(2), 243–254.CrossRefGoogle Scholar
[54] Kim, P., and Olver, P. J. 2004. Geometric integration via multi-space. Regul. Chaotic Dyn., 9(3), 213–226.CrossRefGoogle Scholar
[55] Kogan, I. A. 2000. Inductive approach to moving frames and applications in classical invariant theory. Ph.D. thesis, University of Minnesota.
[56] Kogan, I. A., and Moreno Maza, M. 2002. Computation of canonical forms for ternary cubics. Pages 151–160 of: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation. New York: ACM.Google Scholar
[57] Kogan, I. A., and Olver, P. J. 2003. Invariant Euler–Lagrange equations and the invariant variational bicomplex. Acta Appl. Math., 76(2), 137–193.CrossRefGoogle Scholar
[58] Langer, J., and Perline, R. 1991. Poisson geometry of the filament equation. J. Nonlinear Sci., 1(1), 71–93.CrossRefGoogle Scholar
[59] Lie, S. 1897. Über Integralinvarianten und ihre Verwertung für die Theorie der Differentialgleichungen. Leipz. Berichte, 49, 369–410.Google Scholar
[60] Mansfield, E. L. 2001. Algorithms for symmetric differential systems. Found. Comput. Math., 1(4), 335–383.Google Scholar
[61] Marí Beffa, G. 2006. Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces. Proc. Amer. Math. Soc., 134(3), 779–791.CrossRefGoogle Scholar
[62] Marí Beffa, G. 2008. Projective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds. Ann. Inst. Fourier (Grenoble), 58(4), 1295–1335.CrossRefGoogle Scholar
[63] Marí Beffa, G., Sanders, J. A., and Wang, J. P. 2002. Integrable systems in three-dimensional Riemannian geometry. J. Nonlinear Sci., 12(2), 143–167.CrossRefGoogle Scholar
[64] Marí Beffa, Gloria. 2003. Relative and absolute differential invariants for conformal curves. J. Lie Theory, 13(1), 213–245.Google Scholar
[65] McLachlan, R., and Quispel, R. 2001. Six lectures on the geometric integration of ODEs. Pages 155–210 of: Foundations of Computational Mathematics. London Math. Soc. Lecture Note Ser., vol. 284. Cambridge: Cambridge Univ. Press.Google Scholar
[66] McLenaghan, R. G., and Smirnov, R. G. 2010. Hamilton–Jacobi theory via Cartan Geometry. Singapore: World Sci. Publ. to appear.Google Scholar
[67] McLenaghan, R. G., Smirnov, R. G., and The, D. 2004. An extension of the classical theory of algebraic invariants to pseudo-Riemannian geometry and Hamiltonian mechanics. J. Math. Phys., 45(3), 1079–1120.CrossRefGoogle Scholar
[68] Mikula, K., and Ševčovič, D. 2001. Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J. Appl. Math., 61(5), 1473–1501.Google Scholar
[69] Moons, T., Pauwels, E. J., van Gool, L. J., and Oosterlinck, A. 1995. Foundations of semi-differential invariants. Int. J. Comput. Vision, 14(1), 25–47.CrossRefGoogle Scholar
[70] Morozov, O. 2002. Moving coframes and symmetries of differential equations. J. Phys. A, 35(12), 2965–2977.CrossRefGoogle Scholar
[71] Morozov, O. I. 2005. Structure of symmetry groups via Cartan's method: survey of four approaches. SIGMA Symmetry Integrability Geom. Methods Appl., 1, 006.Google Scholar
[72] Musso, E., and Nicolodi, L. 2009. Invariant signature of closed planar curves. J. Math. Imaging Vision, 35(1), 68–85.CrossRefGoogle Scholar
[73] Olver, P. J. 1993. Applications of Lie Groups to Differential Equations. Second edn. Grad. Texts in Math., vol. 107. New York: Springer.CrossRefGoogle Scholar
[74] Olver, P. J. 1995. Equivalence, Invariants, and Symmetry. Cambridge: Cambridge Univ. Press.CrossRefGoogle Scholar
[75] Olver, P. J. 1999. Classical Invariant Theory. London Math. Soc. Stud. Texts, vol. 44. Cambridge: Cambridge Univ. Press.CrossRefGoogle Scholar
[76] Olver, P. J. 2000. Moving frames and singularities of prolonged group actions. Selecta Math. (N.S.), 6(1), 41–77.CrossRefGoogle Scholar
[77] Olver, P. J. 2001a. Geometric foundations of numerical algorithms and symmetry. Appl. Algebra Engrg. Comm. Comput., 11(5), 417–436.CrossRefGoogle Scholar
[78] Olver, P. J. 2001b. Joint invariant signatures. Found. Comput. Math., 1(1), 3–67.CrossRefGoogle Scholar
[79] Olver, P. J. 2007. Generating differential invariants. J. Math. Anal. Appl., 333(1), 450–471.CrossRefGoogle Scholar
[80] Olver, P. J. 2008. Invariant submanifold flows. J. Phys. A, 41(34), 344017.CrossRefGoogle Scholar
[81] Olver, P. J. 2009a. Differential invariants of maximally symmetric submanifolds. J. Lie Theory, 19(1), 79–99.Google Scholar
[82] Olver, P. J. 2009b. Differential invariants of surfaces. Differential Geom. Appl., 27(2), 230–239.CrossRefGoogle Scholar
[83] Olver, P. J., and Pohjanpelto, J. 2005. Maurer–Cartan forms and the structure of Lie pseudo-groups. Selecta Math. (N.S.), 11(1), 99–126.CrossRefGoogle Scholar
[84] Olver, P. J., and Pohjanpelto, J. 2008. Moving frames for Lie pseudo-groups. Canad. J. Math., 60(6), 1336–1386.CrossRefGoogle Scholar
[85] Olver, P. J., and Pohjanpelto, J. 2009. Differential invariant algebras of Lie pseudo-groups. Adv. Math., 222(5), 1746–1792.CrossRefGoogle Scholar
[86] Olver, P. J., Sapiro, G., and Tannenbaum, A. 1994. Differential invariant signatures and flows in computer vision: a symmetry group approach. Pages 255–306 of: Geometry-Driven Diffusion in Computer Vision. Comput. Imaging Vision, vol. 1. Dordrecht: Kluwer.CrossRefGoogle Scholar
[87] Pauwels, E. J., Moons, T., van Gool, L. J., Kempenaers, P., and Oosterlinck, A. 1995. Recognition of planar shapes under affine distortion. Int. J. Comput. Vision, 14(1), 49–65.CrossRefGoogle Scholar
[88] Rund, H. 1966. The Hamilton–Jacobi Theory in the Calculus of Variations: Its Role in Mathematics and Physics. London–Toronto–New York: D. Van Nostrand Co., Ltd.Google Scholar
[89] Sapiro, G. 2001. Geometric Partial Differential Equations and Image Analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
[90] Shakiban, C., and Lloyd, P. 2004. Signature curves statistics of DNA supercoils. Pages 203–210 of: Geometry, Integrability and Quantization. Softex, Sofia.Google Scholar
[91] Shakiban, C., and Lloyd, R. 2005. Classification of signature curves using latent semantic analysis. Pages 152–162 of: Computer Algebra and Geometric Algebra with Applications. Lecture Notes in Comput. Sci., vol. 3519. New York: Springer.CrossRefGoogle Scholar
[92] Shemyakova, E., and Mansfield, E. L. 2008. Moving frames for Laplace invariants. Pages 295–302 of: ISSAC '08: Proceedings of the Twenty-First International Symposium on Symbolic and Algebraic Computation. New York: ACM.Google Scholar
[93] Starostin, E. L., and van der Heijden, G. H. M. 2007. The shape of a Möbius strip. Nature Materials, 6, 563–567.CrossRefGoogle ScholarPubMed
[94] Valiquette, F. 2009. Applications of Moving Frames to Lie Pseudo-Groups. Ph.D. thesis, University of Minnesota.
[95] Welk, M., Kim, P., and Olver, P. J. 2007. Numerical invariantization for morphological PDE schemes. Pages 508–519 of: Scale Space and Variational Methods in Computer Vision. Lecture Notes in Comput. Sci., vol. 4485. New York: Springer.CrossRefGoogle Scholar
[96] Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., and Tannenbaum, A. 1997. A geometric snake model for segmentation of medical imagery. IEEE Trans. Medical Imaging, 16(2), 199–209.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×