[1] B., Alspach, Research Problem 3, Discrete Math.
36
1981, 333.
[2] B., Alspach and H., Gavlas, Cycle decompositions of Kn and Kn -I, J. Combin. Theory Ser. B
81
2001, 77–99.
[3] L.D., Andersen and A.J.W., Hilton, Generalized latin rectangles II: embedding, Discrete Math.
31
1980, 235–260.
[4] L.D., Andersen, A.J.W., Hilton and E., Mendelsohn, Embedding partial Steiner triple systems, Proc. London Math. Soc.
41
1980, 557–576.
[5] L.D., Andersen and C.A., Rodger, Decompositions of complete graphs: Embedding partial edge-colourings and the method of amalgamations, Surveys in Combinatorics, Lond. Math. Soc. Lect. Note Ser.
307
2003, 7–41.
[6] D., Archdeacon, M., Debowsky, J., Dinitz and H., Gavlas, Cycle systems in the complete bipartite graph minus a one-factor, Discrete Math.
284
2004, 37–43.
[7] J-C., Bermond, C., Huang and D., Sotteau, Balanced cycle and circuit designs: even cases, Ars Combin.
5
1978, 293–318.
[8] J.C., Bermond and D., Sotteau, Cycle and circuit designs odd case, Contributions to graph theory and its applications (Internat. Colloq., Oberhof, 1977) (German), pp. 11–32, Tech. Hochschule Ilmenau, Ilmenau, 1977.
[9] M.A., Bahmanian, Detachments of Hypergraphs I: The Berge- Johnson Problem, Combin. Probab. Comput.
21
2012, 483–495.
[10] A., Bahmanian and C., Rodger, Embedding factorizations for 3- uniform hypergraphs, J. Graph Theory
73
2013, 216–224.
[11] Z., Baranyai, On the factorization of the complete uniform hypergraph, Infinite and finite sets, Colloquia Math. Soc. János Bolyai
10
1973, 91–107.
[12] Z., Baranyai, The edge-coloring of complete hypergraphs I, J. Combin. Theory Ser. B
26 (1979),276–294.
[13] Z., Baranyai and A.E., Brouwer, Extension of colorings of the edges of a complete (uniform hyper)graph, Math. Centre Report ZW91 (Mathematisch Centrum Amsterdam). Zbl. 362.05059 (1977).
[14] B., Barber, D., Kühn, A., Lo and D., Osthus, Edge decompositions of graphs with high minimum degree, Advances in Mathematics
288
2016, 337–385.
[15] E.J., Billington, Multipartite graph decomposition: cycles and closed trails, Matematiche (Catania)
59
2004, 53–72.
[16] D., Bryant, Cycle decompositions of complete graphs, Surveys in Combinatorics, Lond. Math. Soc. Lect. Note Ser.
346
2007, 67–97.
[17] D., Bryant, A conjecture on small embeddings of partial Steiner triple systems, J. Combin. Des.
10
2002, 313–321.
[18] D., Bryant, Packing paths in complete graphs, J. Combin. Theory Ser. B,
100
2010, 206–215.
[19] D., Bryant, On almost-regular edge colourings of hypergraphs (preprint).
[20] D., Bryant, Embeddings of partial Steiner triple systems, J. Combin. Theory Ser. A
106
2004, 77–108.
[21] D., Bryant and M., Buchanan, Embedding partial totally symmetric quasigroups, J. Combin. Theory Ser. A
114
2007, 1046–1088.
[22] D.E., Bryant, D.G., Hoffman and C.A., Rodger, 5-cycle systems with holes, Des. Codes Cryptogr.
8
1996, 103–108.
[23] D., Bryant and D., Horsley, Steiner triple systems with two disjoint subsystems, J. Combin. Des.
14
2006, 14–24.
[24] D., Bryant and D., Horsley, A proof of Lindner's conjecture on embeddings of partial Steiner triple systems, J. Combin. Des.
17
2009, 63–89.
[25] D., Bryant and D., Horsley, Decompositions of complete graphs into long cycles, Bull. London Math. Soc.
41
2009, 927–934.
[26] D., Bryant and D., Horsley, An asymptotic solution to the cycle decomposition problem for complete graphs, J. Combin. Theory Ser. A
117
2010, 1258–1284.
[27] D., Bryant, D., Horsley and B., Maenhaut, Decompositions into 2-regular subgraphs and equitable partial cycle decompositions, J. Combin. Theory Ser. B
93
2005, 67–72.
[28] D., Bryant, D., Horsley, B., Maenhaut and B.R., Smith, Cycle decompositions of complete multigraphs, J. Combin. Des.
19
2011, 42–69.
[29] D., Bryant, D., Horsley, B., Maenhaut and B.R., Smith, Decompositions of complete multigraphs into cycles of varying lengths, arXiv preprint, arXiv:1508.00645.
[30] D., Bryant, D., Horsley and W., Pettersson, Cycle decompositions V: Complete graphs into cycles of arbitrary lengths, Proc. London Math. Soc.
108
2014, 1153–1192.
[31] D., Bryant and B., Maenhaut, Almost Regular Edge Colorings and Regular Decompositions of Complete Graphs, J. Combin. Des.
16
2013, 499–506.
[32] D., Bryant, B., Maenhaut, K., Quinn and B.S., Webb, Existence and embeddings of partial Steiner triple systems of order ten with cubic leaves, Discrete Math.
284
2004, 83–95.
[33] D., Bryant and G., Martin, Small embeddings for partial triple systems of odd index, J. Combin. Theory Ser. A
119
2012, 283–309.
[34] D.E., Bryant and C.A., Rodger, On the Doyen-Wilson theorem for m-cycle systems, J. Combin. Des.
2
1994, 253–271.
[35] D.E., Bryant and C.A., Rodger, The Doyen-Wilson theorem extended to 5-cycles, J. Combin. Theory Ser. A
68
1994, 218–225.
[36] D.E., Bryant, C.A., Rodger and E.R., Spicer, Embeddings of m-cycle systems and incomplete m-cycle systems: m⩽ 14, Discrete Math.
171
1997, 55–75.
[37] N.J., Cavenagh and E.J., Billington, Decomposition of complete multipartite graphs into cycles of even length, Graphs Combin.
16
2000, 49–65.
[38] C-C., Chou and C-M., Fu, Decomposition of Km,n into 4-cycles and 2t-cycles, J. Comb. Optim.
14
2007, 205–218.
[39]C-C., Chou, C-M., Fu and W-C., Huang, Decomposition of Km,n into short cycles, Discrete Math.
197/198 (1999), 195–203.
[40] C.J., Colbourn, Embedding partial Steiner triple systems is NPcomplete, J. Combin. Theory Ser. A
35
1983, 100–105.
[41] C.J., Colbourn, M.J., Colbourn and A., Rosa, Completing small partial triple systems, Discrete Math.
45
1983, 165–179.
[42] C.J., Colbourn and A., Rosa, Triple Systems, Clarendon Press, Oxford (1999).
[43] A., Cruse, On embedding incomplete symmetric latin squares, J. Combin. Theory Ser. A
16
1974, 18–27.
[44] R., Diestel, Graph Theory (4th edition), Springer, Heidelberg (2010).
[45] J., Doyen and R.M., Wilson, Embeddings of Steiner triple systems, Discrete Math.
5
1973, 229–239.
[46] H.E., Dudeney, Amusements in Mathematics, Nelson, Edinburgh (1917), reprinted by Dover Publications, New York (1959).
[47] V., Fack and B.D., McKay, A generalized switching method for combinatorial estimation, Australas. J. Combin.
39
2007, 141–154.
[48] M.N., Ferencak and A.J.W., Hilton, Outline and amalgamated triple systems of even index, Proc. London Math. Soc.
84
2002, 1–34.
[49] H., Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist.
32
1961, 361–386.
[50] R., Häggkvist and T., Hellgren, Extensions of edge-colourings in hypergraphs I, Combinatorics, Paul Erdʺos is eighty, Bolyai Soc. Math. Stud. (1993), 215–238.
[51] K., Heinrich, Path-decompositions, Matematiche (Catania)
47
1993, 241–258.
[52] P., Hell and A., Rosa, Graph decompositions, handcuffed prisoners and balanced P-designs, Discrete Math.
2
1972, 229–252.
[53] A.J.W., Hilton, Hamiltonian Decompositions of Complete Graphs, J. Combin. Theory Ser. B
36
1984, 125–134.
[54] A.J.W., Hilton and C.A., Rodger, The embedding of partial triple systems when 4 divides ƛ, J. Combin. Theory Ser. A
56
1991, 109–137.
[55] D.G., Hoffman, C.C., Lindner and C.A., Rodger, On the construction of odd cycle systems, J. Graph Theory
13
1989, 417–426.
[56] D., Horsley, Decomposing various graphs into short even-length cycles, Ann. Comb.
16
2012, 571–589.
[57] D., Horsley, Small Embeddings of Partial Steiner Triple Systems, J. Combin. Des.
22
2014, 343–365.
[58] D., Horsley, Embedding Partial Steiner Triple Systems with Few Triples, SIAM J. Discrete Math.
28
2014, 1199–1213.
[59] D., Horsley and R.A., Hoyte, Doyen-Wilson Results for Odd Length Cycle Systems, J. Combin. Des.
24
2016, 308–335.
[60] D., Horsley and R.A., Hoyte, Decomposing Ku+w -Ku into cycles of various lengths, arXiv preprint, arXiv:1603.03908.
[61] D., Horsley and D.A., Pike, Embedding partial odd-cycle systems in systems with orders in all admissible congruence classes, J. Combin. Des.
18
2010, 202–208.
[62] S.H.Y., Hung and N.S., Mendelsohn, Handcuffed designs, Aequationes Math.
11
1974, 256–266.
[63] C., Huang and A., Rosa, On the existence of balanced bipartite designs, Utilitas Math.
4
1973, 55–75.
[64] A., Johansson, A note on extending partial triple systems, University of Umea, Sweden, preprint (1997).
[65] P., Keevash, The existence of designs, arXiv preprint, arXiv:1401.3665.
[66] A.B., Kempe, On the geographical problem of the four colours, Amer. J. Math.
2 (1879), 193–200.
[67] T.P., Kirkman, On a problem in combinations, Cambridge and Dublin Math. J.
2
1847, 191–204.
[68] R., Laskar and B., Auerbach, On decomposition of r-partite graphs into edge-disjoint Hamilton circuits, Discrete Math.
14
1976, 265–268.
[69] J.F., Lawless, On the construction of handcuffed designs, J. Combin. Theory Ser. A
16 (1974) 76–86.
[70] J.F., Lawless, Further results concerning the existence of handcuffed designs, Aequationes Math.
11 (1974) 97–106.
[71] C.C., Lindner, A partial Steiner triple system of order n can be embedded in a Steiner triple system of order 6n+3, J. Combin. Theory Ser. A
18
1975, 349–351.
[72] C.C., Lindner and T., Evans, Finite embedding theorems for partial designs and algebras, SMS
56, Les Presses de l'Université de Montréal, (1977).
[73] C.C., Lindner and C.A., Rodger, A partial m = (2k+1)-cycle system of order n can be embedded in an m-cycle system of order (2n+1)m, Discrete Math.
117
1993, 151–159.
[74] E., Lucas, “Récreations Mathématiqués,” Vol II, Gauthier-Villars, Paris (1892).
[75] J., Ma, L., Pu and H., Shen, Cycle decompositions of Kn,n -I, SIAM J. Discrete Math.
20
2006, 603–609.
[76] G., Martin and T.A., McCourt, Small embeddings for partial 5-cycle systems, J. Combin. Des.
20
2012, 199–226.
[77] C.J.H., McDiarmid, The solution of a timetabling problem, J. Inst. Math. Appl.
9
1972, 23–34.
[78] E., Mendelsohn and A., Rosa, Embedding maximal packings of triples, Congr. Numer.
40
1983, 235–247.
[79] M.E., Raines, More on embedding partial totally symmetric quasigroups, Australas. J. Combin.
14
1996, 297–309.
[80] M.E., Raines and C.A., Rodger, Embedding partial extended triple systems and totally symmetric quasigroups, Discrete Math.
176
1997, 211–222.
[81] M., Raines and Z., Szaniszló, Equitable partial cycle systems, Australas. J. Combin.
19
1999, 149–156.
[82] C.A., Rodger and S.J., Stubbs, Embedding partial triple systems, J. Combin. Theory Ser. A
44
1987, 241–252.
[83] C.A., Rodger and S.J., Stubbs, Embedding partial triple systems (Erratum), J. Combin. Theory Ser. A
66
1994, 182–183.
[84] A., Rosa and C., Huang, Another class of balanced graph designs: balanced circuit designs, Discrete Math.
12
1975, 269–293.
[85] M. Šajna, Cycle decompositions III: complete graphs and fixed length cycles, J. Combin. Des. 10
2002, 27–78.
[86] J., Schönheim, On maximal systems of k-tuples, Studia Sci. Math. Hungar.
1
1966, 363–368.
[87] B.R., Smith, Cycle decompositions of complete multigraphs, J. Combin. Des.
18
2010, 85–93.
[88] D., Sotteau, Decomposition of Km,n (K* m,n) into cycles (circuits) of length 2k, J. Combin. Theory Ser. B
30
1981, 75–81.
[89] M., Tarsi, Decomposition of a complete multigraph into simple paths: Nonbalanced handcuffed designs, J. Combin. Theory Ser. A
34
1983, 60–70.
[90] A.G., Thomason, Hamiltonian cycles and uniquely edge colourable graphs, Ann. Discrete Math.
3
1978, 259–268.
[91] C., Treash, The completion of finite incomplete Steiner triple systems with applications to loop theory, J. Combin. Theory Ser. A
10
1971, 259–265.
[92] V.G., Vizing, On an estimate of the chromatic class of a p-graph, Diskret Analiz
3
1964, 25–30.